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PREFACE

Microelectronic Circuits, Seventh Edition, is intended as a text for the core courses in
electronic circuits taught to majors in electrical and computer engineering. It should
also prove useful to engineers and other professionals wishing to update their knowledge
through self-study.

As was the case with the first six editions, the objective of this book is to develop in
the reader the ability to analyze and design electronic circuits, both analog and digital,
discrete and integrated. While the application of integrated circuits is covered, emphasis
is placed on transistor circuit design. This is done because of our belief that even if the
majority of those studying this book were not to pursue a career in IC design, knowledge
of what is inside the IC package would enable intelligent and innovative application of
such chips. Furthermore, with the advances in VLSI technology and design methodol-
ogy, IC design itself has become accessible to an increasing number of engineers.

Prerequisites

The prerequisite for studying the material in this book is a first course in circuit analy-
sis. As a review, some linear circuits material is included here in the appendices: spe-
cifically, two-port network parameters in Appendix C; some useful network theorems
in Appendix D; single-time-constant circuits in Appendix E; and s-domain analysis in
Appendix F. In addition, a number of relevant circuit analysis problems are included at
the beginning of the end-of-chapter problems section of Chapter 1. No prior knowledge
of physical electronics is assumed. All required semiconductor device physics is included,
and Appendix A provides a brief description of IC fabrication. All these appendices can
be found on the book’s website.

Emphasis on Design

It has been our philosophy that circuit design is best taught by pointing out the various
tradeoffs available in selecting a circuit configuration and in selecting component values
for a given configuration. The emphasis on design has been retained in this edition. In
addition to design examples, and design-oriented exercises and end-of-chapter problems
(indicated with a D), the book includes on its website an extensive appendix (Appendix
B) where a large number of simulation and design examples are presented. These empha-
size the use of SPICE, the most valuable circuit-design aid.

Xix
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New to the Seventh Edition

While maintaining the philosophy and pedagogical approach of the first six editions, several changes
have been made to both organization and coverage. Our goal in making structural changes has been
to increase modularity and thus flexibility for the instructor, without causing disturbance to courses
currently using the sixth edition. Changes in coverage are necessitated by the continuing advances in
technology which make some topics of greater relevance and others of less interest. As well, advances
in IC process technology require that the numbers used in the examples, exercises and end-of-chapter
problems be updated to reflect the parameters of newer generations of IC technologies (e.g., some
problems utilize the parameters of the 65-nm CMOS process). This ensures that students are acquir-
ing a real-world perspective on technology.

To improve presentation, a number of chapters and sections have been rewritten for greater clarity.
Specific, noteworthy changes are:

1. New End-of-Chapter Problems and a New Instructor’s Solutions Manual. The number of the
end-of-chapter problems has increased by about 50. Of the resulting 1532 problems, 176 are
entirely new and 790 have new data. The new Instructor’s Solutions Manual is written by Adel
Sedra.

2. Expand-Your-Perspective Notes. This is a new feature providing historical and application
perspectives. About two such notes are included in each chapter. Most are focused on notable
circuit engineers and key inventions.

3. Greater Flexibility in Presenting the MOSFET and the BJT. Two short and completely parallel
chapters present the MOSFET (Chapter 5) and the BJT (Chapter 6). Here the focus is on the
device structure and its physical operation, its current-voltage characteristics, and its applica-
tion in dc circuits. The order of coverage of these two chapters is entirely at the instructor’s
discretion as they have been written to be completely independent of each other.

4. A Unified Treatment of Transistor Amplifiers. The heart of a first course in electronics is the
study of transistor amplifiers. The seventh edition provides a new approach to this subject:
A new Chapter 7 begins with the basic principles that underlie the operation of a transistor
of either type as an amplifier, and presents such concepts as small-signal operation and mod-
eling. This is followed by the classical configurations of transistor amplifiers, biasing methods,
and practical discrete-circuit amplifiers. The combined presentation emphasizes the unity of
the basic principles while allowing for separate treatment of the two device types where this is
warranted. Very importantly, we are able to compare the two devices and to draw conclusions
about their unique areas of application.

5. Improved Presentation of Cascoding. Chapter 8 dealing with the basic building blocks of IC
amplifiers has been rewritten to improve presentation. Specifically, the development of cas-
coding and the key circuit building blocks, the cascode amplifier and the cascode current
source, is now much clearer.

6. Clearer and Simplified Study of Feedback. The feedback chapter has been rewritten to improve,
simplify and clarify the presentation of this key subject.

7. Streamlined Presentation of Frequency Response. While keeping the treatment of frequency
response all together, the chapter has been rewritten to streamline its flow, and simplify and
clarify the presentation.

8. Updated Treatment of Output Stages and Power Amplifiers. Here, we have updated the mate-
rial on MOS power transistors and added a new section on the increasingly important class-D
switching power amplifier.

9. A More Contemporary Approach to Operational Amplifier Circuits. While maintaining cover-
age of some of the enduring features and subcircuits of the classical 741 op amp, its total
coverage is somewhat reduced to make room for modern IC op amp design techniques.
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10. Better Organized and Modernized Coverage of Digital IC Design. Significant improvements
have been made to the brief but comprehensive coverage of digital IC design in Part III. These
include a better motivated study of CMOS logic circuits (Chapter 14) which now begins with
logic gate circuits. The material on logic circuit technologies and design methodologies as well
as the advanced topic of technology scaling and its implications have been moved to Chapter
15. This modularly structured chapter now deals with a selection of advanced and somewhat
specialized topics. Since bipolar is hardly ever used in new digital design, coverage of ECL has
been significantly reduced. Similarly, BICMOS has become somewhat of a specialty topic and its
coverage has been correspondingly reduced. Nevertheless, the complete material on both ECL
and BICMOS is now available on the book’s website. Finally, we have added a new section on
image sensors to Chapter 16 (Memory Circuits).

11. Increased Emphasis on Integrated-Circuit Filters and Oscillators. A section on a popular
approach to integrated-circuit filter design, namely, Transconductance-C filters, has been
added to Chapter 17. To make room for this new material, the subsection on stagger-tuned
amplifiers has been removed and placed in Appendix H, on the website. The cross-coupled
LC oscillator, popular in IC design, has been added to Chapter 18. The section on precision
diode circuits has been removed but is still made available on the website.

12. A Useful and Insightful Comparison of the MOSFET and the BJT. This is now included in
Appendix G, available on the website.

The Book’'s Website

A Companion Website for the book has been set up at www.oup.com/us/sedrasmith. Its content will
change frequently to reflect new developments. The following material is available on the website:

1. Data sheets for hundreds of useful devices to help in laboratory experiments as well as in
design projects.
Links to industrial and academic websites of interest.
A message center to communicate with the authors and with Oxford University Press.
Links to the student versions of both Cadence PSpice® and National Instruments Multisim™.
The input files for all the PSpice® and Multisim™ examples of Appendix B.
Step-by-step guidance to help with the simulation examples and the end-of-chapter problems
identified with a SIM icon.
7. Bonus text material of specialized topics which are either not covered or covered briefly in the
current edition of the textbook. These include:
* Junction Field-Effect Transistors (JFETSs)
* Gallium Arsenide (GaAs) Devices and Circuits
* Transistor-Transistor Logic (TTL) Circuits
* Emitter-Coupled Logic (ECL) Circuits
BiCMOS Circuits
* Precision Rectifier Circuits
8. Appendices for the Book:
» Appendix A: VLSI Fabrication Technology
* Appendix B: SPICE Device Models and Design and Simulation Examples Using PSpice®
and Multisim™
* Appendix C: Two-Port Network Parameters
* Appendix D: Some Useful Network Theorems
* Appendix E: Single-Time-Constant Circuits
* Appendix F: s-domain Analysis: Poles, Zeros, and Bode Plots
* Appendix G: Comparison of the MOSFET and the BJT
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» Appendix H: Design of Stagger-Tuned Amplifiers
» Appendix I: Bibliography
» Appendix L: Answers to Selected Problems

Exercises and End-of-Chapter Problems

Over 475 Exercises are integrated throughout the text. The answer to each exercise is given below
the exercise so students can check their understanding of the material as they read. Solving these
exercises should enable the reader to gauge his or her grasp of the preceding material. In addition,
more than 1530 end-of-chapter Problems, 65% of which are new or revised in this edition, are
provided. The problems are keyed to the individual chapter sections and their degree of difficulty
is indicated by a rating system: difficult problems are marked with an asterisk (*); more difficult
problems with two asterisks (**); and very difficult (and/or time consuming) problems with three
asterisks (***). We must admit, however, that this classification is by no means exact. Our rating
no doubt depended to some degree on our thinking (and mood!) at the time a particular problem
was created. Answers to sample problems are given in Appendix L (on the website), so students
have a checkpoint to tell if they are working out the problems correctly. Complete solutions for all
exercises and problems are included in the Instructor’s Solutions Manual, which is available from the
publisher to those instructors who adopt the book.

As in the previous six editions, many examples are included. The examples, and indeed most of
the problems and exercises, are based on real circuits and anticipate the applications encountered in
designing real-life circuits. This edition continues the use of numbered solution steps in the figures for
many examples, as an attempt to recreate the dynamics of the classroom.

Course Organization

The book contains sufficient material for a sequence of two single-semester courses, each of 40-50 lecture
hours. The modular organization of the book provides considerable flexibility for course design. In the fol-
lowing, we suggest content for a sequence of two classical or standard courses. We also describe some vari-
ations on the content of these two courses and specify supplemental material for a possible third course.

The First Course

The first course is based on Part I of the book, that is, Chapters 1-7. It can be taught, most simply
by starting at the beginning of Chapter 1 and concluding with the end of Chapter 7. However, as
guidance to instructors who wish to follow a different order of presentation or a somewhat modified
coverage, or to deal with situations where time might be constrained, we offer the following remarks:

The core of the first course is the study of the two transistor types, Chapters 5 and 6, in whatever
order the instructor wishes, and transistor amplifiers in Chapter 7. These three chapters must be cov-
ered in full.

Another important part of the first course is the study of diodes (Chapter 4). Here, however, if time
does not permit, some of the applications in the later part of the chapter can be skipped.

We have found it highly motivational to cover op amps (Chapter 2) near the beginning of the
course. This provides the students with the opportunity to work with a practical integrated circuit and
to experiment with non-trivial circuits.

Coverage of Chapter 1, at least of the amplifier sections, should prove helpful. Here the sections
on signals can be either covered in class or assigned as reading material. Section 1.6 on frequency
response is needed if the frequency-response of op-amp circuits is to be studied; otherwise this section
can be delayed to the second course.
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Finally, if the students have not taken a course on physical electronics, Chapter 3 needs to be cov-
ered. Otherwise, it can be used as review material or skipped altogether.

The Second Course

The main subject of the second course is integrated-circuit amplifiers and is based on Part I1 of the
book, that is, Chapters 8-13. Here also, the course can be taught most simply by beginning with
Chapter 8 and concluding with Chapter 13. However, this being a second course, considerable flexibil-
ity in coverage is possible to satisfy particular curriculum designs and/or to deal with time constraints.

First, however, we note that the core material is presented in Chapters 8-11 and these four chapters
must be covered, though not necessarily in their entirety. For instance, some of the sections near the
end of a chapter and identified by the “advanced material” icon can be skipped, usually with no loss
of continuity.

Beyond the required chapters, (8-11), the instructor has many possibilities for the remainder of the
course. These include one or both of the two remaining chapters in Part II, namely, Output Stages
and Power Amplifier (Chapter 12), and Op-Amp Circuits (Chapter 13).

Another possibility, is to include an introduction to digital integrated circuits by covering Chapter
14, and if time permits, selected topics of Chapters 15 and 16.

Yet another possibility for the remainder of the second course is selected topics from the filters
chapter (17) and/or the oscillators chapter (18).

A Digitally Oriented First Course

A digitally-oriented first course can include the following: Chapter 1 (without Section 1.6), Chapter
2, Chapter 3 (if the students have not had any exposure to physical electronics), Chapter 4 (perhaps
without some of the later applications sections), Chapter 5, selected topics from Chapter 7 emphasiz-
ing the basics of the application of the MOSFET as an amplifier, Chapter 14, and selected topics from
Chapters 15 and 16. Such a course would be particularly suited for Computer Engineering students.

Supplemental Material/Third Course

Depending on the selection of topics for the first and second courses, some material will remain and
can be used for part of a third course or as supplemental material to support student design projects.
These can include Chapter 12 (Output Stages and Power Amplifiers), Chapter 13 (Op-Amp Circuits),
Chapter 17 (Filters) and Chapter 18 (Oscillators), which can be used to support a third course on
analog circuits. These can also include Chapters 14, 15 and 16 which can be used for a portion of a
senior-level course on digital IC design.

The Accompanying Laboratory

Courses in electronic circuits are usually accompanied by laboratory experiments. To support the
laboratory component for courses using this book, Professor Vincent Gaudet of the University
of Waterloo has, in collaboration with K.C. Smith, authored a laboratory manual. Laboratory
Explorations, together with an Instructor’s Manual, is available from Oxford University Press.

Another innovative laboratory instruction system, designed to accompany this book, has been
recently developed. Specifically, Illuster Technologies Inc. has developed a digitally controlled lab
platform, AELabs. The platform is realized on printed circuit boards using surface mount devices. A
wide variety of circuits can be configured on this platform through a custom graphical user interface.
This allows students to conduct many experiments relatively quickly. More information is available
from Illuster (see link on the Companion Website).
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An Outline for the Reader

Part I, Devices and Basic Circuits, includes the most fundamental and essential topics for the study of
electronic circuits. At the same time, it constitutes a complete package for a first course on the subject.

Chapter 1. The book starts with an introduction to the basic concepts of electronics in Chapter 1.
Signals, their frequency spectra, and their analog and digital forms are presented. Amplifiers are
introduced as circuit building blocks and their various types and models are studied. This chapter also
establishes some of the terminology and conventions used throughout the text.

Chapter 2. Chapter 2 deals with operational amplifiers, their terminal characteristics, simple appli-
cations, and practical limitations. We chose to discuss the op amp as a circuit building block at this
early stage simply because it is easy to deal with and because the student can experiment with op-amp
circuits that perform nontrivial tasks with relative ease and with a sense of accomplishment. We have
found this approach to be highly motivating to the student. We should point out, however, that part
or all of this chapter can be skipped and studied at a later stage (for instance, in conjunction with
Chapter 9, Chapter 11, and/or Chapter 13) with no loss of continuity.

Chapter 3. Chapter 3 provides an overview of semiconductor concepts at a level sufficient for under-
standing the operation of diodes and transistors in later chapters. Coverage of this material is useful
in particular for students who have had no prior exposure to device physics. Even those with such a
background would find a review of Chapter 3 beneficial as a refresher. The instructor can choose to
cover this material in class or assign it for outside reading.

Chapter 4. The first electronic device, the diode, is studied in Chapter 4. The diode terminal character-
istics, the circuit models that are used to represent it, and its circuit applications are presented. Depending
on the time available in the course, some of the diode applications (e.g. Section 4.6) can be skipped. Also,
the brief description of special diode types (Section 4.7) can be left for the student to read.

Chapters 5 and 6. The foundation of electronic circuits is established by the study of the two transis-
tor types in use today: the MOS transistor in Chapter 5 and the bipolar transistor in Chapter 6. These
two chapters have been written to be completely independent of one another and thus can be studied in
either order, as desired. Furthermore, the two chapters have the same structure, making it easier and
faster to study the second device, as well as to draw comparisons between the two device types.

Each of Chapters 5 and 6 begins with a study of the device structure and its physical operation, lead-
ing to a description of its terminal characteristics. Then, to allow the student to become very familiar
with the operation of the transistor as a circuit element, a large number of examples are presented of dc
circuits utilizing the device. The last section of each of Chapters 5 and 6 deals with second-order effects
that are included for completeness, but that can be skipped if time does not permit detailed coverage.

Chapter 7. The heart of a first course in electronics is the study of transistor amplifiers. Chapter 7
(new to this edition) presents a unified treatment of the subject. It begins with the basic principles
that underlie the operation of a transistor, of either type, as an amplifier, and proceeds to present
the important concepts of small-signal operation and modeling. This is followed by a study of the
basic configurations of single-transistor amplifiers. After a presentation of dc biasing methods, the
chapter concludes with practical examples of discrete-circuit amplifiers. The combined presentation
emphasizes the unity of the basic principles while allowing for separate treatment of the two device
types where this is warranted. Very importantly, we are able to compare the two devices and to draw
conclusions about their unique areas of application.

After the study of Part I, the reader will be fully prepared to study either integrated-circuit ampli-
fiers in Part 11, or digital integrated circuits in Part I11.

Part 11, Integrated-Circuit Amplifiers, is devoted to the study of practical amplifier circuits that can
be fabricated in the integrated-circuit (IC) form. Its six chapters constitute a coherent treatment of IC
amplifier design and can thus serve as a second course in electronic circuits.

MOS and Bipolar. Throughout Part I, both MOS and bipolar circuits are presented side-by-side.
Because the MOSFET is by far the dominant device, its circuits are presented first. Bipolar circuits
are discussed to the same depth but occasionally more briefly.
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Chapter 8. Beginning with a brief introduction to the philosophy of IC design, Chapter 8 presents
the basic circuit building blocks that are used in the design of IC amplifiers. These include current
mirrors, current sources, gain cells, and cascode amplifiers.

Chapter 9. The most important IC building block, the differential pair, is the main topic of Chapter
9. The last section of Chapter 9 is devoted to the study of multistage amplifiers.

Chapter 10. Chapter 10 presents a comprehensive treatment of the important subject of amplifier
frequency response. Here, Sections 10.1, 10.2, and 10.3 contain essential material; Section 10.4 pro-
vides an in-depth treatment of very useful new tools; and Sections 10.5 to 10.8 present the frequency
response analysis of a variety of amplifier configurations that can be studied as and when needed.
A selection of the latter sections can be made depending on the time available and the instructor’s
preference.

Chapter 11. The fourth of the essential topics of Part II, feedback, is the subject of Chapter 11.
Both the theory of negative feedback and its application in the design of practical feedback ampli-
fiers are presented. We also discuss the stability problem in feedback amplifiers and treat frequency
compensation in some detail.

Chapter 12. In Chapter 12 we switch gears from dealing with small-signal amplifiers to those that
are required to handle large signals and large amounts of power. Here we study the different amplifier
classes—A, B, and AB—and their realization in bipolar and CMOS technologies. We also consider
power BJTs and power MOSFETs, and study representative IC power amplifiers. A brief study of the
increasingly popular Class D amplifier is also presented. Depending on the availability of time, some
of the later sections can be skipped in a first reading.

Chapter 13. Finally, Chapter 13 brings together all the topics of Part I in an important application;
namely, the design of operational amplifier circuits. We study both CMOS and bipolar op amps. In
the latter category, besides the classical and still timely 741 circuit, we present modern techniques for
the design of low-voltage op amps (Section 13.4).

Part 111, Digital Integrated Circuits, provides a brief but nonetheless comprehensive and sufficiently
detailed study of digital IC design. Our treatment is almost self-contained, requiring for the most part
only a thorough understanding of the MOSFET material presented in Chapter 5. Thus, Part 111 can
be studied right after Chapter 5. The only exceptions to this are the last section in Chapter 15 which
requires knowledge of the BJT (Chapter 6). Also, knowledge of the MOSFET internal capacitances
(Section 10.2.2) will be needed.

Chapter 14. Chapter 14 is the foundation of Part I1I. It begins with the motivating topic of CMOS
logic-gate circuits. Then, following a detailed study of digital logic inverters, we concentrate on the
CMOS inverter; its static and dynamic characteristics and its design. Transistor sizing and power
dissipation round out the topics of Chapter 14. The material covered in this chapter is the minimum
needed to learn something meaningful about digital circuits.

Chapter 15. Chapter 15 has a modular structure and presents six topics of somewhat advanced
nature. It begins with a presentation of Moore’s law and the technology scaling that has made the
multi-billion-transistor chip possible. This is followed by an overview of digital IC technologies, and
the design methodologies that make the design of super-complex digital ICs possible. Four different
logic-circuit types are then presented. Only the last of these includes bipolar transistors.

Chapter 16. Digital circuits can be broadly divided into logic and memory circuits. The latter is the
subject of Chapter 16.

Part 1V, Filters and Oscillators, is intentionally oriented toward applications and systems. The two
topics illustrate powerfully and dramatically the application of both negative and positive feedback.

Chapter 17. Chapter 17 deals with the design of filters, which are important building blocks of com-
munication and instrumentation systems. A comprehensive, design-oriented treatment of the subject is
presented. The material provided should allow the reader to perform a complete filter design, starting
from specification and ending with a complete circuit realization. A wealth of design tables is included.

Chapter 18. Chapter 18 deals with circuits for the generation of signals with a variety of waveforms:
sinusoidal, square, and triangular. We also present circuits for the nonlinear shaping of waveforms.
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Appendices. The twelve appendices contain much useful background and supplementary material.
We wish to draw the reader’s attention in particular to the first two: Appendix A provides a con-
cise introduction to the important topic of IC fabrication technology including IC layout. Appendix
B provides SPICE device models as well as a large number of design and simulation examples in
PSpice® and Multisim™. The examples are keyed to the book chapters. These Appendices and a
great deal more material on these simulation examples can be found on the Companion Website.

Ancillaries

A complete set of ancillary materials is available with this text to support your course.

For the Instructor

The Ancillary Resource Center (ARC) at www.oup-arc.com/sedrasmith is a convenient destination
for all the instructor resources that accompany Microelectronic Circuits. Accessed online through
individual user accounts, the ARC provides instructors with access to up-to-date ancillaries at any
time while guaranteeing the security of grade-significant resources. The ARC replaces the Instructor’s
Resource CD that accompanied the sixth edition. On the ARC, you will find:

* An electronic version of the Instructor’s Solutions Manual.

* PowerPoint-based figure slides that feature all the images and summary tables from the text, with
their captions, so they can easily be displayed and explained in class.

* Detailed instructor’s support for the SPICE circuit simulations in Multisim™ and PSpice®.

The Instructor’s Solutions Manual (ISBN 978-0-19-933915-0), written by Adel Sedra, contains detailed
solutions to all in-text exercises and end-of-chapter problems found in Microelectronic Circuits. The
Instructor’s Solutions Manual for Laboratory Explorations to Accompany Microelectronic Circuits
(ISBN 978-0-19-933926-6) contains detailed solutions to all the exercises and problems found in this
student’s laboratory guide.

For the Student and Instructor

A Companion Website at www.oup.com/us/sedrasmith features permanently cached versions of device
datasheets, so students can design their own circuits in class. The website also contains SPICE circuit
simulation examples and lessons. Bonus text topics and the Appendices are also featured on the website.

The Laboratory Explovations to Accompany Microelectronic Circuits (ISBN 978-0-19-933925-9)
invites students to explore the realm of real-world engineering through practical, hands-on experi-
ments. Keyed to sections in the text and taking a “learn-by-doing” approach, it presents labs that
focus on the development of practical engineering skills and design practices.
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P art |, Devices and Basic Circuits, includes the most fundamental and essential topics
for the study of electronic circuits. At the same time, it constitutes a complete
package for a first course on the subject.

The heart of Part | is the study of the three basic semiconductor devices: the diode
(Chapter 4), the MOS transistor (Chapter 5), and the bipolar transistor (Chapter 6). In each
case, we study the device operation, its characterization, and its basic circuit applications.
Chapter 7 then follows with a study of the most fundamental application of the two
transistor types; namely, their use in amplifier design. This side-by-side study of MOSFET
and BJT amplifiers allows us to see similarities between these amplifiers and to compare
them, which in turn highlights the distinct areas of applicability of each, as well as showing
the unity of the basic principles that underlie the use of transistors as amplifiers.

For those who have not had a prior course on device physics, Chapter 3 provides
an overview of semiconductor concepts at a level sufficient for the study of electronic
circuits. A review of Chapter 3 should prove useful even for those with prior knowledge
of semiconductors.

Since the purpose of electronic circuits is the processing of signals, it is essential
to understand signals, their characterization in the time and frequency domains, and
their analog and digital representations. The basis for such understanding is provided
in Chapter 1, which also introduces the most common signal-processing function,
amplification, and the characterization and types of amplifiers.

Besides diodes and transistors, the basic electronic devices, the op amp is studied in
Part I. Although not an electronic device in the most fundamental sense, the op amp is
commercially available as an integrated circuit (IC) package and has well-defined terminal
characteristics. Thus, even though the op amp’s internal circuit is complex, typically
incorporating 20 or more transistors, its almost-ideal terminal behavior makes it possible
to treat the op amp as a circuit element and to use it in the design of powerful circuits,
as we do in Chapter 2, without any knowledge of its internal construction. We should
mention, however, that the study of op amps can be delayed until a later point, and
Chapter 2 can be skipped with no loss of continuity.

The foundation of this book, and of any electronics course, is the study of the two
transistor types in use today: the MOS transistor in Chapter 5 and the bipolar transistor in
Chapter 6. These two chapters have been written to be completely independent of each
other and thus can be studied in either order, as desired.

After the study of Part |, the reader will be fully prepared to undertake the study of
either integrated-circuit amplifiers in Part Il or digital integrated circuits in Part IlI.
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IN THIS CHAPTER YOU WILL LEARN

1. That electronic circuits process signals, and thus understanding electrical signals is
essential to appreciating the material in this book.

2. The Thévenin and Norton representations of signal sources.
3. The representation of a signal as the sum of sine waves.
4. The analog and digital representations of a signal.

5. The most basic and pervasive signal-processing function: signal amplification, and
correspondingly, the signal amplifier.

6. How ampilifiers are characterized (modeled) as circuit building blocks independent of
their internal circuitry.

7. How the frequency response of an amplifier is measured, and how it is calculated,
especially in the simple but common case of a single-time-constant (STC) type
response.

Introduction

The subject of this book is modern electronics, a field that has come to be known as
microelectronics. Microelectronics refers to the integrated-circuit (IC) technology that at
the time of this writing is capable of producing circuits that contain billions of components in
a small piece of silicon (known as a silicon chip) whose area is on the order of 100 mm’. One
such microelectronic circuit, for example, is a complete digital computer, which accordingly
is known as a microcomputer or, more generally, a microprocessor. The microelectronic
circuits you will learn to design in this book are used in almost every device we encounter
in our daily lives: in the appliances we use in our homes; in the vehicles and transportation
systems we use to travel; in the cell phones we use to communicate; in the medical equipment
we need to care for our health; in the computers we use to do our work; and in the audio and
video systems, the radio and TV sets, and the multitude of other digital devices we use to
entertain ourselves. Indeed, it is difficult to conceive of modern life without microelectronic
circuits.

In this book we shall study electronic devices that can be used singly (in the design of
discrete circuits) or as components of an integrated-circuit (IC) chip. We shall study the
design and analysis of interconnections of these devices, which form discrete and integrated
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circuits of varying complexity and perform a wide variety of functions. We shall also learn
about available IC chips and their application in the design of electronic systems.

The purpose of this first chapter is to introduce some basic concepts and terminol-
ogy. Inparticular, we shall learn about signals and about one of the most important
signal-processing functions electronic circuits are designed to perform, namely, signal ampli-
fication. We shall then look at circuit representations or models for linear amplifiers. These
models will be employed in subsequent chapters in the design and analysis of actual amplifier
circuits.

In addition to motivating the study of electronics, this chapter serves as a bridge between
the study of linear circuits and that of the subject of this book: the design and analysis of
electronic circuits.

1.1 Signals

Signals contain information about a variety of things and activities in our physical world.
Examples abound: Information about the weather is contained in signals that represent the
air temperature, pressure, wind speed, etc. The voice of a radio announcer reading the news
into a microphone provides an acoustic signal that contains information about world affairs.
To monitor the status of a nuclear reactor, instruments are used to measure a multitude of
relevant parameters, each instrument producing a signal.

To extract required information from a set of signals, the observer (be it a human or
a machine) invariably needs to process the signals in some predetermined manner. This
signal processing is usually most conveniently performed by electronic systems. For this
to be possible, however, the signal must first be converted into an electrical signal, that is,
a voltage or a current. This process is accomplished by devices known as transducers. A
variety of transducers exist, each suitable for one of the various forms of physical signals.
For instance, the sound waves generated by a human can be converted into electrical signals
by using a microphone, which is in effect a pressure transducer. It is not our purpose here
to study transducers; rather, we shall assume that the signals of interest already exist in the
electrical domain and represent them by one of the two equivalent forms shown in Fig. 1.1.
In Fig. 1.1(a) the signal is represented by a voltage source v, () having a source resistance
R,. In the alternate representation of Fig. 1.1(b) the signal is represented by a current source
i;(#) having a source resistance R;. Although the two representations are equivalent, that in
Fig. 1.1(a) (known as the Thévenin form) is preferred when R, is low. The representation of
Fig. 1.1(b) (known as the Norton form) is preferred when R, is high. The reader will come to
appreciate this point later in this chapter when we study the different types of amplifiers. For
the time being, it is important to be familiar with Thévenin’s and Norton’s theorems (for a

(1) i(1) R

Figure 1.1 Two alternative representations
of a signal source: (a) the Thévenin form;
(a) (b) (b) the Norton form.
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brief review, see Appendix D) and to note that for the two representations in Fig. 1.1 to be
equivalent, their parameters are related by

0,(t) = R,i (1)

The output resistance of a signal source, although inevitable, is an imperfection that limits the ability of the
source to deliver its full signal strength to a load. To see this point more clearly, consider the signal source
when connected to a load resistance R, as shown in Fig. 1.2. For the case in which the source is represented
by its Thévenin equivalent form, find the voltage v, that appears across R,, and hence the condition that
R, must satisfy for v, to be close to the value of v,. Repeat for the Norton-represented source; in this case
finding the current i, that flows through R, and hence the condition that R, must satisfy for i, to be close
to the value of i,.

(@ (b)

Figure 1.2 Circuits for Example 1.1.

Solution

For the Thévenin-represented signal source shown in Fig. 1.2(a), the output voltage v, that appears across
the load resistance R, can be found from the ratio of the voltage divider formed by R, and R,

From this equation we see that for

the source resistance R, must be much lower than the load resistance R, ,
Rs << RL

Thus, for a source represented by its Thévenin equivalent, ideally R, = 0, and as R, is increased, relative
to the load resistance R, with which this source is intended to operate, the voltage v, that appears across
the load becomes smaller, not a desirable outcome.
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Example 1.1 continued

Next, we consider the Norton-represented signal source in Fig. 1.2(b). To obtain the current i, that flows
through the load resistance R, , we utilize the ratio of the current divider formed by R, and R, ,

.. R
i, =1,
R.v + RL
From this relationship we see that for
i, 1,
the source resistance R, must be much larger than R, ,
Rs > RL

Thus for a signal source represented by its Norton equivalent, ideally R, = 0o, and as R, is reduced, relative
to the load resistance R, with which this source is intended to operate, the current i, that flows through the
load becomes smaller, not a desirable outcome.

Finally, we note that although circuit designers cannot usually do much about the value of R, they may
have to devise a circuit solution that minimizes or eliminates the loss of signal strength that results when
the source is connected to the load.

1.1 For the signal-source representations shown in Figs. 1.1(a) and 1.1(b), what are the open-circuit output
voltages that would be observed? If, for each, the output terminals are short-circuited (i.e., wired
together), what current would flow? For the representations to be equivalent, what must the relationship
be between v, i, and R ?

Ans. For (a), v,. = v,(¢); for (b), v,. = R,i (¢); for (a), i, = v, (¢)/R; for (b), i, = i (¢); for equivalency,
v,(1) =R,i (1)

1.2 A signal source has an open-circuit voltage of 10 mV and a short-circuit current of 10 pA. What is the
source resistance?
Ans. 1k

1.3 A signal source that is most conveniently represented by its Thévenin equivalent has v, = 10 mV and
R, = 1kQ. If the source feeds a load resistance R,, find the voltage v, that appears across the load for
R, =100k, 10k, 1k, and 100 Q. Also, find the lowest permissible value of R, for which the
output voltage is at least 80% of the source voltage.
Ans. 9.9mV; 9.1 mV; 5mV; 0.9 mV; 4kQ

1.4 A signal source that is most conveniently represented by its Norton equivalent form has i, = 10 pA
and R, = 100 k€. If the source feeds a load resistance R, , find the current i, that flows through the load
for R, = 1k, 10k, 100 k<2, and 1 M. Also, find the largest permissible value of R, for which the
load current is at least 80% of the source current.

Ans. 99 LA; 9.1 nA; S nA; 0.9 pA; 25kQ
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Figure 1.3 An arbitrary voltage signal v ().

From the discussion above, it should be apparent that a signal is a time-varying quantity
that can be represented by a graph such as that shown in Fig. 1.3. In fact, the information
content of the signal is represented by the changes in its magnitude as time progresses;
that is, the information is contained in the “wiggles” in the signal waveform. In general,
such waveforms are difficult to characterize mathematically. In other words, it is not easy to
describe succinctly an arbitrary-looking waveform such as that of Fig. 1.3. Of course, such a
description is of great importance for the purpose of designing appropriate signal-processing
circuits that perform desired functions on the given signal. An effective approach to signal
characterization is studied in the next section.

1.2 Frequency Spectrum of Signals

An extremely useful characterization of a signal, and for that matter of any arbitrary function of
time, is in terms of its frequency spectrum. Such a description of signals is obtained through
the mathematical tools of Fourier series and Fourier transform.' We are not interested
here in the details of these transformations; suffice it to say that they provide the means for
representing a voltage signal v (f) or a current signal i (#) as the sum of sine-wave signals
of different frequencies and amplitudes. This makes the sine wave a very important signal in
the analysis, design, and testing of electronic circuits. Therefore, we shall briefly review the
properties of the sinusoid.
Figure 1.4 shows a sine-wave voltage signal v, (¢),

u,(1) =V, sinwt (1.1)

where V, denotes the peak value or amplitude in volts and w denotes the angular frequency
in radians per second; that is, w = 2 f rad/s, where f is the frequency in hertz, f = 1/T Hz,
and T is the period in seconds.

The sine-wave signal is completely characterized by its peak value V,, its frequency w, and
its phase with respect to an arbitrary reference time. In the case depicted in Fig. 1.4, the time

'The reader who has not yet studied these topics should not be alarmed. No detailed application of this
material will be made until Chapter 10. Nevertheless, a general understanding of Section 1.2 should be
very helpful in studying early parts of this book.

9
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Figure 1.5 A symmetrical square-wave signal of amplitude V.

origin has been chosen so that the phase angle is 0. It should be mentioned that it is common
to express the amplitude of a sine-wave signal in terms of its root-mean-square (rms) value,
which is equal to the peak value divided by +/2. Thus the rms value of the sinusoid v,(r)
of Fig. 1.4 is va/ﬁ. For instance, when we speak of the wall power supply in our homes as
being 120 V, we mean that it has a sine waveform of 120 +/2 volts peak value.

Returning now to the representation of signals as the sum of sinusoids, we note that the
Fourier series is utilized to accomplish this task for the special case of a signal that is a periodic
function of time. On the other hand, the Fourier transform is more general and can be used to
obtain the frequency spectrum of a signal whose waveform is an arbitrary function of time.

The Fourier series allows us to express a given periodic function of time as the sum of
an infinite number of sinusoids whose frequencies are harmonically related. For instance, the
symmetrical square-wave signal in Fig. 1.5 can be expressed as

4v 1 1
> v(t) = — (sinwyt + gsin3a)ot+ gsin5w0t+~~-) (1.2)
b/

where V is the amplitude of the square wave and w, = 27r/T (T is the period of the square wave)
is called the fundamental frequency. Note that because the amplitudes of the harmonics
progressively decrease, the infinite series can be truncated, with the truncated series providing
an approximation to the square waveform.

The sinusoidal components in the series of Eq. (1.2) constitute the frequency spectrum of
the square-wave signal. Such a spectrum can be graphically represented as in Fig. 1.6, where
the horizontal axis represents the angular frequency w in radians per second.
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Figure 1.6 The frequency spectrum (also known as the line spectrum) of the periodic square wave of
Fig. 1.5.

Figure 1.7 The frequency spectrum of
> an arbitrary waveform such as that in
0  (rad/s) Fig. 1.3.

Frequency spectrum V, (w) in volts

The Fourier transform can be applied to a nonperiodic function of time, such as that
depictedin Fig. 1.3, and provides its frequency spectrum as a continuous function of frequency,
as indicated in Fig. 1.7. Unlike the case of periodic signals, where the spectrum consists of
discrete frequencies (at w, and its harmonics), the spectrum of a nonperiodic signal contains
in general all possible frequencies. Nevertheless, the essential parts of the spectra of practical
signals are usually confined to relatively short segments of the frequency (w) axis—an
observation that is very useful in the processing of such signals. For instance, the spectrum
of audible sounds such as speech and music extends from about 20 Hz to about 20 kHz—a
frequency range known as the audio band. Here we should note that although some musical
tones have frequencies above 20 kHz, the human ear is incapable of hearing frequencies that
are much above 20 kHz. As another example, analog video signals have their spectra in the
range of 0 MHz to 4.5 MHz.

We conclude this section by noting that a signal can be represented either by the manner
in which its waveform varies with time, as for the voltage signal v,(¢) shown in Fig. 1.3, orin
terms of its frequency spectrum, as in Fig. 1.7. The two alternative representations are known
as the time-domain representation and the frequency-domain representation, respectively. The
frequency-domain representation of v,(f) will be denoted by the symbol V, (®).

1
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1.5 Find the frequencies f and w of a sine-wave signal with a period of 1 ms.
Ans. f=1000 Hz; @ = 27 x 10’ rad/s

1.6 Whatis the period T of sine waveforms characterized by frequencies of (a) f = 60 Hz? (b) f = 10~ Hz?
(c)f =1MHz?
Ans. 16.7 ms; 1000 s; 1 jus

1.7 The UHF (ultra high frequency) television broadcast band begins with channel 14 and extends from
470 MHz to 806 MHz. If 6 MHz is allocated for each channel, how many channels can this band
accommodate?
Ans. 56; channels 14 to 69

1.8 When the square-wave signal of Fig. 1.5, whose Fourier series is given in Eq. (1.2), is applied to a
resistor, the total power dissipated may be calculated directly using the relationship P = 1/T fOT (V*IR) dt
or indirectly by summing the contribution of each of the harmonic components, that is, P = P, + P, +
P, + ..., which may be found directly from rms values. Verify that the two approaches are equivalent.
What fraction of the energy of a square wave is in its fundamental? In its first five harmonics? In its
first seven? First nine? In what number of harmonics is 90% of the energy? (Note that in counting
harmonics, the fundamental at w, is the first, the one at 2w, is the second, etc.)
Ans. 0.81; 0.93; 0.95; 0.96; 3

1.3 Analog and Digital Signals

The voltage signal depicted in Fig. 1.3 is called an analog signal. The name derives from the
fact that such a signal is analogous to the physical signal that it represents. The magnitude of
an analog signal can take on any value; that is, the amplitude of an analog signal exhibits a
continuous variation over its range of activity. The vast majority of signals in the world around
us are analog. Electronic circuits that process such signals are known as analog circuits. A
variety of analog circuits will be studied in this book.

An alternative form of signal representation is that of a sequence of numbers, each number
representing the signal magnitude at an instant of time. The resulting signal is called a digital
signal. To see how a signal can be represented in this form—that is, how signals can be
converted from analog to digital form—consider Fig. 1.8(a). Here the curve represents a
voltage signal, identical to that in Fig. 1.3. At equal intervals along the time axis, we have
marked the time instants 7,,7,,1,, and so on. At each of these time instants, the magnitude of
the signal is measured, a process known as sampling. Figure 1.8(b) shows a representation of
the signal of Fig. 1.8(a) in terms of its samples. The signal of Fig. 1.8(b) is defined only at the
sampling instants; it no longer is a continuous function of time; rather, it is a discrete-time
signal. However, since the magnitude of each sample can take any value in a continuous
range, the signal in Fig. 1.8(b) is still an analog signal.

Now if we represent the magnitude of each of the signal samples in Fig. 1.8(b) by a number
having a finite number of digits, then the signal amplitude will no longer be continuous; rather,
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Figure 1.8 Sampling the continuous-time analog signal in (a) results in the discrete-time signal in (b).

it is said to be quantized, discretized, or digitized. The resulting digital signal then is simply
a sequence of numbers that represent the magnitudes of the successive signal samples.

The choice of number system to represent the signal samples affects the type of digital
signal produced and has a profound effect on the complexity of the digital circuits required to
process the signals. It turns out that the binary number system results in the simplest possible
digital signals and circuits. In a binary system, each digit in the number takes on one of only
two possible values, denoted 0 and 1. Correspondingly, the digital signals in binary systems
need have only two voltage levels, which can be labeled low and high. As an example, in
some of the digital circuits studied in this book, the levels are 0 V and +5 V. Figure 1.9 shows
the time variation of such a digital signal. Observe that the waveform is a pulse train with 0 V
representing a 0 signal, or logic 0, and 45 V representing logic 1.

If we use N binary digits (bits) to represent each sample of the analog signal, then the
digitized sample value can be expressed as

D=0b2"+b2"+b2" +---+b, 2" (1.3)

where b,,b,,...,by_,, denote the N bits and have values of 0 or 1. Here bit b, is the least
significant bit (LSB), and bit b,,_, is the most significant bit (MSB). Conventionally, this
binary number is written as by_, by_, ...b,. We observe that such a representation quantizes
the analog sample into one of 2" levels. Obviously the greater the number of bits (i.e., the larger
the V), the closer the digital word D approximates the magnitude of the analog sample. That is,
increasing the number of bits reduces the quantization error and increases the resolution of the

13
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Figure 1.9 Variation of a particular binary digital signal with time.
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Figure 1.10 Block-diagram representation of the analog-to-digital converter (ADC).

analog-to-digital conversion. This improvement is, however, usually obtained at the expense
of more complex and hence more costly circuit implementations. It is not our purpose here to
delve into this topic any deeper; we merely want the reader to appreciate the nature of analog
and digital signals. Nevertheless, it is an opportune time to introduce a very important circuit
building block of modern electronic systems: the analog-to-digital converter (A/D or ADC)
shown in block form in Fig. 1.10. The ADC accepts at its input the samples of an analog signal
and provides for each input sample the corresponding N-bit digital representation (according
to Eq. 1.3) at its N output terminals. Thus although the voltage at the input might be, say,
6.51V, at each of the output terminals (say, at the ith terminal), the voltage will be either low
(0V) or high (5 V) if b, is supposed to be 0 or 1, respectively. The dual circuit of the ADC is
the digital-to-analog converter (D/A or DAC). It converts an N-bit digital input to an analog
output voltage.

Once the signal is in digital form, it can be processed using digital circuits. Of course
digital circuits can deal also with signals that do not have an analog origin, such as the signals
that represent the various instructions of a digital computer.

Since digital circuits deal exclusively with binary signals, their design is simpler than that
of analog circuits. Furthermore, digital systems can be designed using a relatively few different
kinds of digital circuit blocks. However, a large number (e.g., hundreds of thousands or even
millions) of each of these blocks are usually needed. Thus the design of digital circuits poses
its own set of challenges to the designer but provides reliable and economic implementations
of a great variety of signal-processing functions, many of which are not possible with analog
circuits. At the present time, more and more of the signal-processing functions are being
performed digitally. Examples around us abound: from the digital watch and the calculator to
digital audio systems, digital cameras, and digital television. Moreover, some long-standing
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analog systems such as the telephone communication system are now almost entirely digital.
And we should not forget the most important of all digital systems, the digital computer.

The basic building blocks of digital systems are logic circuits and memory circuits. We
shall study both in this book, beginning in Chapter 14.

One final remark: Although the digital processing of signals is at present all-pervasive,
there remain many signal-processing functions that are best performed by analog circuits.
Indeed, many electronic systems include both analog and digital parts. It follows that a good
electronics engineer must be proficient in the design of both analog and digital circuits, or
mixed-signal or mixed-mode design as it is currently known. Such is the aim of this book.

1.9 Consider a 4-bit digital word D = b,b,b, b, (see Eq. 1.3) used to represent an analog signal v, that varies
between O V and +15 V.
(a) Give D corresponding to v, =0V, 1V,2V,and 15V.
(b) What change in v, causes a change from O to 1 in (i) b,, (ii) b,, (iii) b,, and (iv) b,?
(c) If v, =5.2 'V, what do you expect D to be? What is the resulting error in representation?
Ans. (a) 0000, 0001, 0010, 1111; (b) +1V,+2V, +4V, +8V; (c) 0101, 4%

ANALOG VS. As digital became the preferred implementation of more and more signal-processing
DIGITAL CIRCUIT functions, the need arose for greater numbers of digital circuit design engineers. Yet
ENGINEERS: despite predictions made periodically that the demand for analog circuit design

engineers would lessen, this has not been the case. Rather, the demand for analog
engineers has, if anything, increased. What is true, however, is that the skill level
required of analog engineers has risen. Not only are they asked to design circuits of
greater sophistication and tighter specifications, but they also have to do this using
technologies that are optimized for digital (and not analog) circuits. This is dictated
by economics, as digital usually constitutes the larger part of most systems.

1.4 Amplifiers

In this section, we shall introduce the most fundamental signal-processing function, one that
is employed in some form in almost every electronic system, namely, signal amplification.
We shall study the amplifier as a circuit building block; that is, we shall consider its external
characteristics and leave the design of its internal circuit to later chapters.

1.4.1 Signal Amplification

From a conceptual point of view the simplest signal-processing task is that of signal
amplification. The need for amplification arises because transducers provide signals that
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are said to be “weak,” that is, in the microvolt (V) or millivolt (mV) range and possessing
little energy. Such signals are too small for reliable processing, and processing is much easier
if the signal magnitude is made larger. The functional block that accomplishes this task is the
signal amplifier.

It is appropriate at this point to discuss the need for linearity in amplifiers. Care must be
exercised in the amplification of a signal, so that the information contained in the signal is
not changed and no new information is introduced. Thus when we feed the signal shown in
Fig. 1.3 to an amplifier, we want the output signal of the amplifier to be an exact replica of that
at the input, except of course for having larger magnitude. In other words, the “wiggles” in the
output waveform must be identical to those in the input waveform. Any change in waveform
is considered to be distortion and is obviously undesirable.

An amplifier that preserves the details of the signal waveform is characterized by the
relationship

v,(t) =Av,(t) (1.4)

where v; and v, are the input and output signals, respectively, and A is a constant
representing the magnitude of amplification, known as amplifier gain. Equation (1.4) is a
linear relationship; hence the amplifier it describes is a linear amplifier. It should be easy to
see that if the relationship between v, and v, contains higher powers of v;, then the waveform
of v, will no longer be identical to that of v,. The amplifier is then said to exhibit nonlinear
distortion.

The amplifiers discussed so far are primarily intended to operate on very small input
signals. Their purpose is to make the signal magnitude larger, and therefore they are thought
of as voltage amplifiers. The preamplifier in the home stereo system is an example of a
voltage amplifier.

At this time we wish to mention another type of amplifier, namely, the power amplifier.
Such an amplifier may provide only a modest amount of voltage gain but substantial current
gain. Thus while absorbing little power from the input signal source to which it is connected,
often a preamplifier, it delivers large amounts of power to its load. An example is found in the
power amplifier of the home stereo system, whose purpose is to provide sufficient power to
drive the loudspeaker, which is the amplifier load. Here we should note that the loudspeaker is
the output transducer of the stereo system; it converts the electric output signal of the system
into an acoustic signal. A further appreciation of the need for linearity can be acquired by
reflecting on the power amplifier. A linear power amplifier causes both soft and loud music
passages to be reproduced without distortion.

1.4.2 Amplifier Circuit Symbol

The signal amplifier is obviously a two-port circuit. Its function is conveniently represented
by the circuit symbol of Fig. 1.11(a). This symbol clearly distinguishes the input and output
ports and indicates the direction of signal flow. Thus, in subsequent diagrams it will not be
necessary to label the two ports “input” and “output.” For generality we have shown the
amplifier to have two input terminals that are distinct from the two output terminals. A more
common situation is illustrated in Fig. 1.11(b), where a common terminal exists between the
input and output ports of the amplifier. This common terminal is used as a reference point
and is called the circuit ground.
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Figure 1.11 (a) Circuit symbol for amplifier. (b) An amplifier with a common terminal (ground) between
the input and output ports.
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Figure 1.12 (a) A voltage amplifier fed with a signal v, (¢) and connected to a load resistance R, . (b) Transfer
characteristic of a linear voltage amplifier with voltage gain A .

1.4.3 Voltage Gain

A linear amplifier accepts an input signal v,(t) and provides at the output, across a load
resistance R, (see Fig. 1.12(a)), an output signal v, (¢) that is a magnified replica of v,(¢). The
voltage gain of the amplifier is defined by

Voltage gain (A,) = Yo (1.5
v

1
Fig. 1.12(b) shows the transfer characteristic of a linear amplifier. If we apply to the input
of this amplifier a sinusoidal voltage of amplitude V, we obtain at the output a sinusoid of
amplitude A,V

1.4.4 Power Gain and Current Gain

An amplifier increases the signal power, an important feature that distinguishes an amplifier
from a transformer. In the case of a transformer, although the voltage delivered to the load
could be greater than the voltage feeding the input side (the primary), the power delivered
to the load (from the secondary side of the transformer) is less than or at most equal to the

1.4 Amplifiers
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power supplied by the signal source. On the other hand, an amplifier provides the load with
power greater than that obtained from the signal source. That is, amplifiers have power gain.
The power gain of the amplifier in Fig. 1.12(a) is defined as

load power (P,)

Power gain (4,) = (1.6)

input power(P,;)

_ Zolo (1.7)
Urly
where i, is the current that the amplifier delivers to the load (R,),i, = v,/R,, and i, is the
current the amplifier draws from the signal source. The current gain of the amplifier is
defined as

Current gain (A,) = l—O (1.8)

I
From Egs. (1.5) to (1.8) we note that
A=A A (1.9

14 vihi

1.4.5 Expressing Gain in Decibels

The amplifier gains defined above are ratios of similarly dimensioned quantities. Thus they
will be expressed either as dimensionless numbers or, for emphasis, as V/V for the voltage
gain, A/A for the current gain, and W/W for the power gain. Alternatively, for a number of
reasons, some of them historic, electronics engineers express amplifier gain with a logarithmic
measure. Specifically the voltage gain A can be expressed as

Voltage gain in decibels =20 log|A,| dB

and the current gain A; can be expressed as

Current gain in decibels =20 log|A;| dB

Since power is related to voltage (or current) squared, the power gain A, can be expressed in
decibels as

Power gain in decibels =10 logA, dB

The absolute values of the voltage and current gains are used because in some cases
A, or A, will be a negative number. A negative gain A, simply means that there is a 180°
phase difference between input and output signals; it does not imply that the amplifier is
attenuating the signal. On the other hand, an amplifier whose voltage gain is, say, —20 dB
is in fact attenuating the input signal by a factor of 10 (i.e., A, = 0.1 V/V).

1.4.6 The Amplifier Power Supplies

Since the power delivered to the load is greater than the power drawn from the signal source,
the question arises as to the source of this additional power. The answer is found by observing
that amplifiers need dc power supplies for their operation. These dc sources supply the extra
power delivered to the load as well as any power that might be dissipated in the internal circuit
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Figure 1.13 An amplifier that requires two dc supplies (shown as batteries) for operation.

of the amplifier (such power is converted to heat). In Fig. 1.12(a) we have not explicitly shown
these dc sources.

Figure 1.13(a) shows an amplifier that requires two dc sources: one positive of value
V.. and one negative of value V,,. The amplifier has two terminals, labeled V" and V", for
connection to the dc supplies. For the amplifier to operate, the terminal labeled V™ has to
be connected to the positive side of a dc source whose voltage is V. and whose negative
side is connected to the circuit ground. Also, the terminal labeled V™ has to be connected to
the negative side of a dc source whose voltage is V,, and whose positive side is connected
to the circuit ground. Now, if the current drawn from the positive supply is denoted /..
and that from the negative supply is /. (see Fig. 1.13a), then the dc power delivered to the
amplifier is

P de = VCCICC + VEEIEE

If the power dissipated in the amplifier circuit is denoted P,
for the amplifier can be written as

dissipateas tNE€ power-balance equation

Pdc +Pl = PL +Pdissipaled
where P, is the power drawn from the signal source and P; is the power delivered to the load.
Since the power drawn from the signal source is usually small, the amplifier power efficiency
is defined as

P

L
— x 100 1.10
P (1.10)

The power efficiency is an important performance parameter for amplifiers that handle large
amounts of power. Such amplifiers, called power amplifiers, are used, for example, as output
amplifiers of stereo systems.

In order to simplify circuit diagrams, we shall adopt the convention illustrated in
Fig. 1.13(b). Here the V* terminal is shown connected to an arrowhead pointing upward and
the V" terminal to an arrowhead pointing downward. The corresponding voltage is indicated
next to each arrowhead. Note that in many cases we will not explicitly show the connections

n=
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of the amplifier to the dc power sources. Finally, we note that some amplifiers require only
one power supply.

Consider an amplifier operating from £10-V power supplies. It is fed with a sinusoidal voltage having 1 V
peak and delivers a sinusoidal voltage output of 9 V peak to a 1-k€2 load. The amplifier draws a current of
9.5 mA from each of its two power supplies. The input current of the amplifier is found to be sinusoidal
with 0.1 mA peak. Find the voltage gain, the current gain, the power gain, the power drawn from the dc
supplies, the power dissipated in the amplifier, and the amplifier efficiency.

Solution 9
A===9VIN
or
A,=20log9=19.1dB
a 9V
I=—" =9mA
1 kQ
An 9
A== —90A/A
I, 0.1
or
A =2010g90 = 39.1 dB
9 9
pP=V I =-——=405mW
L Orms ~ Orms \/i\/i
P,=V 1 L 0l 0.05 mW
1 irms * frms \f2 2
P 40.5
A =-"t=_""=810W/W
"= P T 005
or

A,=101og810=29.1 dB
P, =10x9.5+10 x 9.5 = 190 mW
Pdissipated =Pdc +P1 _PL
=190+0.05 —40.5 = 149.6 mW

P,
n=—x100=213%
P

de

From the above example we observe that the amplifier converts some of the dc power it draws
from the power supplies to signal power that it delivers to the load.



1.4.7 Amplifier Saturation

Practically speaking, the amplifier transfer characteristic remains linear over only a limited
range of input and output voltages. For an amplifier operated from two power supplies
the output voltage cannot exceed a specified positive limit and cannot decrease below a
specified negative limit. The resulting transfer characteristic is shown in Fig. 1.14, with the
positive and negative saturation levels denoted L, and L_, respectively. Each of the two
saturation levels is usually within a fraction of a volt of the voltage of the corresponding power
supply.

Obviously, in order to avoid distorting the output signal waveform, the input signal swing
must be kept within the linear range of operation,

L, L

A, A,
In Fig. 1.14, which shows two input waveforms and the corresponding output waveforms, the
peaks of the larger waveform have been clipped off because of amplifier saturation.

Output peaks

Yo A clipped due to
saturation
N\ N\
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Figure 1.14 An amplifier transfer characteristic that is linear except for output saturation.
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ic A

Figure 1.15 Symbol convention employed throughout the book.

1.4.8 Symbol Convention

At this point, we draw the reader’s attention to the terminology we shall employ throughout
the book. To illustrate the terminology, Fig. 1.15 shows the waveform of a current i (¢) that is
flowing through a branch in a particular circuit. The current i..(f) consists of a dc component
I on which is superimposed a sinusoidal component i, (t) whose peak amplitude is /.. Observe
that at a time ¢, the total instantaneous current i.(¢) is the sum of the dc current /. and the
signal current i, (%),

ic(®) =1-+i.(1) (1.11)
where the signal current is given by
i.(t) =1 sinwt

Thus, we state some conventions: Total instantaneous quantities are denoted by a lowercase
symbol with uppercase subscript(s), for example, i.(¢), v, (). Direct-current (dc) quantities
are denoted by an uppercase symbol with uppercase subscript(s), for example, I, V.
Incremental signal quantities are denoted by a lowercase symbol with lowercase subscript(s),
for example, i.(t), v, (). If the signal is a sine wave, then its amplitude is denoted by an
uppercase symbol with lowercase subscript(s), for example, I, V,;. Finally, although not
shown in Fig. 1.15, dc power supplies are denoted by an uppercase letter with a double-letter
uppercase subscript, for example, V., V. A similar notation is used for the dc current drawn
from the power supply, for example, I..,1,,.

1.10 An amplifier has a voltage gain of 100 V/V and a current gain of 1000 A/A. Express the voltage and
current gains in decibels and find the power gain.
Ans. 40 dB; 60 dB; 50 dB
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1.117 An amplifier operating from a single 15-V supply provides a 12-V peak-to-peak sine-wave signal to
a 1-k€2 load and draws negligible input current from the signal source. The dc current drawn from
the 15-V supply is 8 mA. What is the power dissipated in the amplifier, and what is the amplifier
efficiency?

Ans. 102 mW; 15%

1.5 Circuit Models for Amplifiers

A substantial part of this book is concerned with the design of amplifier circuits that use
transistors of various types. Such circuits will vary in complexity from those using a single
transistor to those with 20 or more devices. In order to be able to apply the resulting amplifier
circuit as a building block in a system, one must be able to characterize, or model, its terminal
behavior. In this section, we study simple but effective amplifier models. These models
apply irrespective of the complexity of the internal circuit of the amplifier. The values of
the model parameters can be found either by analyzing the amplifier circuit or by performing
measurements at the amplifier terminals.

1.5.1 Voltage Amplifiers

Figure 1.16(a) shows a circuit model for the voltage amplifier. The model consists of a
voltage-controlled voltage source having a gain factor A, an input resistance R, that accounts
for the fact that the amplifier draws an input current from the signal source, and an output
resistance R, that accounts for the change in output voltage as the amplifier is called upon to
supply output current to a load. To be specific, we show in Fig. 1.16(b) the amplifier model
fed with a signal voltage source v, having a resistance R, and connected at the output to a
load resistance R, . The nonzero output resistance R, causes only a fraction of A, v, to appear
across the output. Using the voltage-divider rule we obtain

R,
vo =Avovi
R, +R,

Thus the voltage gain is given by

R
Yop Tt (1.12) =<
U;

A — “tvo
R, +R,

v

It follows that in order not to lose gain in coupling the amplifier output to a load, the output
resistance R, should be much smaller than the load resistance R, . In other words, for a given
R, one must design the amplifier so that its R, is much smaller than R,. Furthermore, there
are applications in which R; is known to vary over a certain range. In order to keep the output
voltage v, as constant as possible, the amplifier is designed with R, much smaller than the
lowest value of R,. An ideal voltage amplifier is one with R, = 0. Equation (1.12) indicates
also that for R, =00,A, =A,,. Thus A, is the voltage gain of the unloaded amplifier, or the
open-circuit voltage gain. It should also be clear that in specifying the voltage gain of an
amplifier, one must also specify the value of load resistance at which this gain is measured or
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Figure 1.16 (a) Circuit model for the voltage amplifier. (b) The voltage amplifier with input signal source
and load.

calculated. If a load resistance is not specified, it is normally assumed that the given voltage
gain is the open-circuit gain A .

The finite input resistance R; introduces another voltage-divider action at the input, with
the result that only a fraction of the source signal v, actually reaches the input terminals of
the amplifier; that is,

R (1.13)
R, +R, ’

i:vs

It follows that in order not to lose a significant portion of the input signal in coupling the signal
source to the amplifier input, the amplifier must be designed to have an input resistance R, much
greater than the resistance of the signal source, R; > R,. Furthermore, there are applications
in which the source resistance is known to vary over a certain range. To minimize the effect
of this variation on the value of the signal that appears at the input of the amplifier, the design
ensures that R, is much greater than the largest value of R,. An ideal voltage amplifier is one
with R; = oo. In this ideal case both the current gain and power gain become infinite.
The overall voltage gain (v,/v,) can be found by combining Egs. (1.12) and (1.13),
% R, R,

o 1

= Avo— > D
v R, +R R, +R,

s

There are situations in which one is interested not in voltage gain but only in a significant
power gain. For instance, the source signal can have a respectable voltage but a source
resistance that is much greater than the load resistance. Connecting the source directly to the
load would result in significant signal attenuation. In such a case, one requires an amplifier with
a high input resistance (much greater than the source resistance) and a low output resistance
(much smaller than the load resistance) but with a modest voltage gain (or even unity gain).
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Such an amplifier is referred to as a buffer amplifier. We shall encounter buffer amplifiers
often throughout this book.

1.12 A transducer characterized by a voltage of 1 V rms and a resistance of 1 M2 is available to drive a
10-2 load. If connected directly, what voltage and power levels result at the load? If a unity-gain (i.e.,
A, = 1) buffer amplifier with 1-MS input resistance and 10-£2 output resistance is interposed between
source and load, what do the output voltage and power levels become? For the new arrangement, find
the voltage gain from source to load, and the power gain (both expressed in decibels).
Ans. 10 WV rms; 107" W; 0.25 V; 6.25 mW; —12 dB; 44 dB

1.13 The output voltage of a voltage amplifier has been found to decrease by 20% when a load resistance
of 1 k€2 is connected. What is the value of the amplifier output resistance?
Ans. 250 ©

1.14 An amplifier with a voltage gain of +40 dB, an input resistance of 10 k€2, and an output resistance
of 1 k2 is used to drive a 1-k€2 load. What is the value of A ,? Find the value of the power gain in
decibels.

Ans. 100 V/V; 44 dB

1.5.2 Cascaded Amplifiers

To meet given amplifier specifications, we often need to design the amplifier as a cascade
of two or more stages. The stages are usually not identical; rather, each is designed to serve
a specific purpose. For instance, in order to provide the overall amplifier with a large input
resistance, the first stage is usually required to have a large input resistance. Also, in order to
equip the overall amplifier with a low output resistance, the final stage in the cascade is usually
designed to have a low output resistance. To illustrate the analysis and design of cascaded
amplifiers, we consider a practical example.

Figure 1.17 depicts an amplifier composed of a cascade of three stages. The amplifier is fed by a signal
source with a source resistance of 100 k<2 and delivers its output into a load resistance of 100 2. The
first stage has a relatively high input resistance and a modest gain factor of 10. The second stage has a
higher gain factor but lower input resistance. Finally, the last, or output, stage has unity gain but a low
output resistance. We wish to evaluate the overall voltage gain, that is, v,/v,, the current gain, and the
power gain.
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Example 1.3 continued

Source | Stage 1 | Stage 2 | Stage 3 | Load

100 kQ | 1kQ | 10 ! 100

i, —>=, ‘ ‘ ‘ | =
] ] ]+ ! ’
Us } vagIMQ g4 } 02100k 100 4, } 03 Z10KQ |43 } 100 Q v,
I I I \ -
= = = ! = = ] =
| | |

= \
[
Figure 1.17 Three-stage amplifier for Example 1.3.

Solution

The fraction of source signal appearing at the input terminals of the amplifier is obtained using the
voltage-divider rule at the input, as follows:
(o 1 MQ

o —0.909 V/V
v, 1 MQ+ 100 kQ

The voltage gain of the first stage is obtained by considering the input resistance of the second stage to be
the load of the first stage; that is,
. 100 k€2
A, =22 10— _99V/V
v, 100 k2 + 1 k2
Similarly, the voltage gain of the second stage is obtained by considering the input resistance of the third
stage to be the load of the second stage,

A,="8 100 0K2__gh9ypy
2 v, 10kQ+1kQ
Finally, the voltage gain of the output stage is as follows:
A= 102 a0 vy

Uy 100 2+ 10
The total gain of the three stages in cascade can now be found from
A= “ =A,AA,; =818 VIV
Vi

or 58.3 dB.

To find the voltage gain from source to load, we multiply A, by the factor representing the loss of gain at
the input; that is,
Y Ui,
U U Uy U

=818 x 0.909 = 743.6 V/V
or 57.4 dB.
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The current gain is found as follows:

i v,/100 Q
A="=———
T v, /1M
=10"xA,=8.18 x 10° A/A
or 138.3 dB.
The power gain is found from
A = P, _ Url,

=A,A, =818 x8.18 x 10° = 66.9 x 10° W/W

or 98.3 dB. Note that

A,(dB) = 1[4, (dB) +A,(dB)]

A few comments on the cascade amplifier in the above example are in order. To avoid
losing signal strength at the amplifier input where the signal is usually very small, the first
stage is designed to have a relatively large input resistance (1 MS2), which is much larger
than the source resistance. The trade-off appears to be a moderate voltage gain (10 V/V).
The second stage does not need to have such a high input resistance; rather, here we need to
realize the bulk of the required voltage gain. The third and final, or output, stage is not asked
to provide any voltage gain; rather, it functions as a buffer amplifier, providing a relatively
large input resistance and a low output resistance, much lower than R, . It is this stage that
enables connecting the amplifier to the 100-€2 load. These points can be made more concrete
by solving the following exercises. In so doing, observe that in finding the gain of an amplifier
stage in a cascade amplifier, the loading effect of the succeeding amplifier stage must be taken
into account as we have done in the above example.

1.15 What would the overall voltage gain of the cascade amplifier in Example 1.3 be without stage 3
(i.e., with the load resistance connected to the output of the second stage)?
Ans. 81.8 V/V; a decrease by a factor of 9.

1.16 For the cascade amplifier of Example 1.3, let v, be 1 mV. Find v,,, v, v, and v;,.
Ans. 0.91 mV; 9mV; 818 mV; 744 mV

1.17 (a) Model the three-stage amplifier of Example 1.3 (without the source and load), using the voltage
amplifier model of Fig. 1.16(a). What are the values of R;, A ,, and R,?
(b) If R, varies in the range 10 €2 to 1000 €2, find the corresponding range of the overall voltage gain,
v,lv,.
Ans. 1 M, 900 V/V, 10 ©; 409 V/V to 810 V/V
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1.5.3 Other Amplifier Types

In the design of an electronic system, the signal of interest—whether at the system input, at
an intermediate stage, or at the output—can be either a voltage or a current. For instance,
some transducers have very high output resistances and can be more appropriately modeled
as current sources. Similarly, there are applications in which the output current rather than the
voltage is of interest. Thus, although it is the most popular, the voltage amplifier considered
above is just one of four possible amplifier types. The other three are the current amplifier,
the transconductance amplifier, and the transresistance amplifier. Table 1.1 shows the four
amplifier types, their circuit models, the definition of their gain parameters, and the ideal
values of their input and output resistances.

1.5.4 Relationships between the Four Amplifier Models

Although for a given amplifier a particular one of the four models in Table 1.1 is most
preferable, any of the four can be used to model any amplifier. In fact, simple relationships
can be derived to relate the parameters of the various models. For instance, the open-circuit

Table 1.1 The Four Amplifier Types
Type Circuit Model Gain Parameter Ideal Characteristics
Voltage Amplifier R i, Open-Circuit Voltage Gain R, =00
/ + U R() = 0
A, =2 (VIV)
Vi li,=0
Current Amplifier Short-Circuit Current Gain R, =0
i R,=00
A,= =2 (A/A)
lily,=0
Transconductance i, Short-Circuit Transconductance R, =00
Amplifier o —> i R, =00
i1 [ . G, =~ (AIV)
v; :: R; G, ;i :: R, Uy Yo=0
O _L O
Transresistance i; R i, Open-Circuit Transresistance R, =0
Amplifier v o R,=0
R,= -~ (V/IA)
i liy=o
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voltage gain A, can be related to the short-circuit current gain A;; as follows: The open-circuit
output voltage given by the voltage amplifier model of Table 1.1is A, v,. The current amplifier
model in the same table gives an open-circuit output voltage of A, i;R,. Equating these two
values and noting that i; = v,/R; gives

A, = R, (1.14)
vo T ‘s Ri :
Similarly, we can show that
A,,=G,R, (1.15)
and
A, = R, (1.16)
vo — R :

The expressions in Egs. (1.14) to (1.16) can be used to relate any two of the gain parameters
A, A, G,,andR,,.

vor" s

1.5.5 Determining R; and R,

From the amplifier circuit models given in Table 1.1, we observe that the input resistance
R, of the amplifier can be determined by applying an input voltage v; and measuring (or
calculating) the input current i;; that is, R, = v,/i;. The output resistance is found as the ratio
of the open-circuit output voltage to the short-circuit output current. Alternatively, the output
resistance can be found by eliminating the input signal source (then #; and v, will both be zero)
and applying a voltage signal v, to the output of the amplifier, as shown in Fig. 1.18. If we
denote the current drawn from v, into the output terminals as i, (note that i, is opposite in
direction to i,), then R, = v,/i,. Although these techniques are conceptually correct, in actual
practice more refined methods are employed in measuring R; and R, .

1.5.6 Unilateral Models

The amplifier models considered above are unilateral; that is, signal flow is unidirectional,
from input to output. Most real amplifiers show some reverse transmission, which is usually
undesirable but must nonetheless be modeled. We shall not pursue this point further at this
time except to mention that more complete models for linear two-port networks are given in
Appendix C. Also, in later chapters, we will find it necessary in certain cases to augment the
models of Table 1.1 to take into account the nonunilateral nature of some transistor amplifiers.

S
Iy Figure 1.18 Determining the output resistance.
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Example 1.4

The bipolar junction transistor (BJT), which will be studied in Chapter 6, is a three-terminal device that
when powered up by a dc source (battery) and operated with small signals can be modeled by the linear
circuit shown in Fig. 1.19(a). The three terminals are the base (B), the emitter (E), and the collector (C).
The heart of the model is a transconductance amplifier represented by an input resistance between B and
E (denoted r,), a short-circuit transconductance g,,, and an output resistance 7, .

R, B C
o
B +
+ T R, Yy
Upe I -
o

Figure 1.19 (a) Small-signal circuit model for a bipolar junction transistor (BJT). (b) The BJT connected as an
amplifier with the emitter as a common terminal between input and output (called a common-emitter amplifier). (c)
An alternative small-signal circuit model for the BJT.

(a) With the emitter used as a common terminal between input and output, Fig. 1.19(b) shows a
transistor amplifier known as a common-emitter or grounded-emitter circuit. Derive an expression
for the voltage gain v,/v,, and evaluate its magnitude for the case R, = 5k, r, = 2.5 k<,
8, =40mA/V, r, = 100 k<2, and R, = 5 k2. What would the gain value be if the effect of r, were
neglected?

(b) An alternative model for the transistor in which a current amplifier rather than a transconductance
amplifier is utilized is shown in Fig. 1.19(c). What must the short-circuit current gain 8 be? Give both
an expression and a value.
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Solution

(a) Refer to Fig. 1.19(b). We use the voltage-divider rule to determine the fraction of input signal that
appears at the amplifier input as

r
= z 1.17
vbe Usrﬂ‘i‘Rx ( )

Next we determine the output voltage v, by multiplying the current (g,,v,,) by the resistance (R, || 7,),

U, = =8,V (R, || 7,) (1.18)

Substituting for v,, from Eq. (1.17) yields the voltage-gain expression

-
= R 1.19
” G+&&<mm (1.19)

Observe that the gain is negative, indicating that this amplifier is inverting. For the given component
values,

v, 2.5
== x 40 x (5] 100)
v 2545

=—63.5V/V

Neglecting the effect of r,, we obtain

2,
Y 25 oxs
v, 2545

= —66.7 VIV

which is quite close to the value obtained including r,. This is not surprising, since r, > R, .

(b) For the model in Fig. 1.19(c) to be equivalent to that in Fig. 1.19(a),
Biy = 8,0,
But i, = v, /r,; thus,
=i
For the values given,

B =40mA/V x 2.5k
=100 A/A
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1.18 Consider a current amplifier having the model shown in the second row of Table 1.1. Let the amplifier
be fed with a signal current-source i, having a resistance R_, and let the output be connected to a load
resistance R, . Show that the overall current gain is given by

i R, R

0 s 0

—=Ao
i R+R,R,+R,

s

1.19 Consider the transconductance amplifier whose model is shown in the third row of Table 1.1. Let a
voltage signal source v, with a source resistance R, be connected to the input and a load resistance R,
be connected to the output. Show that the overall voltage gain is given by

Y, R R IR)
U_ mRi"l‘RS 0 L

s

1.20 Consider a transresistance amplifier having the model shown in the fourth row of Table 1.1. Let the
amplifier be fed with a signal current source i, having a resistance R, and let the output be connected
to a load resistance R, . Show that the overall gain is given by

v R R,

0 s

Rm
R+R,R, +R,

s s i

1.21 Find the input resistance between terminals B and G in the circuit shown in Fig. E1.21. The voltage
v, 1s a test voltage with the input resistance R,, defined as R,, = v /i,.

i ip
—>B >
<Z .
— ST Biy
Uy @) w RL
E
R,
¢ =
R;, Figure E1.21

Ans. R, =r,+(B+ DR,
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1.6 Frequency Response of Amplifiers®

From Section 1.2 we know that the input signal to an amplifier can always be expressed as
the sum of sinusoidal signals. It follows that an important characterization of an amplifier is
in terms of its response to input sinusoids of different frequencies. Such a characterization of
amplifier performance is known as the amplifier frequency response.

1.6.1 Measuring the Amplifier Frequency Response

We shall introduce the subject of amplifier frequency response by showing how it can be
measured. Figure 1.20 depicts a linear voltage amplifier fed at its input with a sine-wave
signal of amplitude V, and frequency w. As the figure indicates, the signal measured at the
amplifier output also is sinusoidal with exactly the same frequency w. This is an important
point to note: Whenever a sine-wave signal is applied to a linear circuit, the resulting output
is sinusoidal with the same frequency as the input. In fact, the sine wave is the only signal that
does not change shape as it passes through a linear circuit. Observe, however, that the output
sinusoid will in general have a different amplitude and will be shifted in phase relative to
the input. The ratio of the amplitude of the output sinusoid (V,) to the amplitude of the input
sinusoid (V,) is the magnitude of the amplifier gain (or transmission) at the test frequency
w. Also, the angle ¢ is the phase of the amplifier transmission at the test frequency w. If we
denote the amplifier transmission, or transfer function as it is more commonly known, by
T (w), then

T(w)] = L2
| (w)|_7,-
LT (w)=¢

The response of the amplifier to a sinusoid of frequency w is completely described by |T ()]
and ZT(w). Now, to obtain the complete frequency response of the amplifier we simply
change the frequency of the input sinusoid and measure the new value for |7'| and ZT. The
end result will be a table and/or graph of gain magnitude [|7 (@)|] versus frequency and a table
and/or graph of phase angle [£/T (w)] versus frequency. These two plots together constitute
the frequency response of the amplifier; the first is known as the magnitude or amplitude

Linear amplifier

v; = V; sin wt =V, sin (wt + ¢)

Figure 1.20 Measuring the frequency response of a linear amplifier: At the test frequency, the amplifier gain
is characterized by its magnitude (V /V,) and phase ¢.

2Except for its use in the study of the frequency response of op-amp circuits in Sections 2.5 and 2.7, the
material in this section will not be needed in a substantial manner until Chapter 10.
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20 log | T(w)]|
A

| |
| |
je——Bandwidth———>+

ey

) I

1 w)

Figure 1.21 Typical magnitude response of an amplifier: |7 (w)| is the magnitude of the amplifier transfer
function—that is, the ratio of the output V () to the input V,(w).

response, and the second is the phase response. Finally, we should mention that it is a
common practice to express the magnitude of transmission in decibels and thus plot 20 log
|T (w)| versus frequency.

1.6.2 Amplifier Bandwidth

Figure 1.21 shows the magnitude response of an amplifier. It indicates that the gain is almost
constant over a wide frequency range, roughly between w, and w,. Signals whose frequencies
are below w, or above w, will experience lower gain, with the gain decreasing as we move
farther away from w, and w,. The band of frequencies over which the gain of the amplifier is
almost constant, to within a certain number of decibels (usually 3 dB), is called the amplifier
bandwidth. Normally the amplifier is designed so that its bandwidth coincides with the
spectrum of the signals it is required to amplify. If this were not the case, the amplifier would
distort the frequency spectrum of the input signal, with different components of the input
signal being amplified by different amounts.

1.6.3 Evaluating the Frequency Response of Amplifiers

Above, we described the method used to measure the frequency response of an amplifier.
We now briefly discuss the method for analytically obtaining an expression for the frequency
response. What we are about to say is just a preview of this important subject, whose detailed
study is in Chapter 10.

To evaluate the frequency response of an amplifier, one has to analyze the amplifier
equivalent circuit model, taking into account all reactive components.” Circuit analysis
proceeds in the usual fashion but with inductances and capacitances represented by their
reactances. An inductance L has a reactance or impedance jwL, and a capacitance C has a
reactance or impedance 1/jwC or, equivalently, a susceptance or admittance jowC. Thus in a
[frequency-domain analysis we deal with impedances and/or admittances. The result of the

*Note that in the models considered in previous sections no reactive components were included. These
were simplified models and cannot be used alone to predict the amplifier frequency response.
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analysis is the amplifier transfer function 7' (w)

where V;(w) and V, (w) denote the input and output signals, respectively. T'(w) is generally
a complex function whose magnitude |7 (w)| gives the magnitude of transmission or the
magnitude response of the amplifier. The phase of 7'(w) gives the phase response of the
amplifier.

In the analysis of a circuit to determine its frequency response, the algebraic manipulations
can be considerably simplified by using the complex frequency variable s. In terms of s,
the impedance of an inductance L is sL and that of a capacitance C is 1/sC. Replacing the
reactive elements with their impedances and performing standard circuit analysis, we obtain
the transfer function 7' (s) as

V,(s)

T(s)= V)

Subsequently, we replace s by jw to determine the transfer function for physical frequencies,
T (jw). Note that T (jw) is the same function we called T (w) above'; the additional jisincluded
in order to emphasize that T (jw) is obtained from 7T (s) by replacing s with jo.

1.6.4 Single-Time-Constant Networks

In analyzing amplifier circuits to determine their frequency response, one is greatly aided by
knowledge of the frequency-response characteristics of single-time-constant (STC) networks.
An STC network is one that is composed of, or can be reduced to, one reactive component
(inductance or capacitance) and one resistance. Examples are shown in Fig. 1.22. An STC
network formed of an inductance L and a resistance R has a time constant T = L/R. The time
constant T of an STC network composed of a capacitance C and a resistance R is given by
T =CR.

Appendix E presents a study of STC networks and their responses to sinusoidal, step, and
pulse inputs. Knowledge of this material will be needed at various points throughout this
book, and the reader will be encouraged to refer to the appendix. At this point we need in
particular the frequency-response results; we will, in fact, briefly discuss this important topic
now.

R C
+ +
Vi C vV, Vi R v,
° ° Figure 1.22 Two examples of STC net-
works: (a) a low-pass network and (b) a
(a) (b) high-pass network.

* At this stage, we are using s simply as a shorthand for jow. We shall not require detailed knowledge of
s-plane concepts until Chapter 10. A brief review of s-plane analysis is presented in Appendix F.
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Most STC networks can be classified into two categories,” low pass (LP) and high pass
(HP), with each of the two categories displaying distinctly different signal responses. As an
example, the STC network shown in Fig. 1.22(a) is of the low-pass type and that in Fig. 1.22(b)
is of the high-pass type. To see the reasoning behind this classification, observe that the
transfer function of each of these two circuits can be expressed as a voltage-divider ratio, with
the divider composed of a resistor and a capacitor. Now, recalling how the impedance of a
capacitor varies with frequency (Z = 1/jwC), itis easy to see that the transmission of the circuit
in Fig. 1.22(a) will decrease with frequency and approach zero as w approaches co. Thus the
circuit of Fig. 1.22(a) acts as a low-pass filter’; it passes low-frequency, sine-wave inputs
with little or no attenuation (at w = 0, the transmission is unity) and attenuates high-frequency
input sinusoids. The circuit of Fig. 1.22(b) does the opposite; its transmission is unity at & = 0o
and decreases as w is reduced, reaching 0 for w = 0. The latter circuit, therefore, performs as
a high-pass filter.

Table 1.2 provides a summary of the frequency-response results for STC networks of
both types.” Also, sketches of the magnitude and phase responses are given in Figs. 1.23 and
1.24. These frequency-response diagrams are known as Bode plots, and the 3-dB frequency
(w,) 1s also known as the corner frequency, break frequency, or pole frequency. The
reader is urged to become familiar with this information and to consult Appendix E if further
clarifications are needed. In particular, it is important to develop a facility for the rapid

Table 1.2 Frequency Response of STC Networks
Low-Pass (LP) High-Pass (HP)
. K Ks
Transfer Function T (s) _—
1+ (s/w,) s+ w,
. . K K
Transfer Function (for physical TS Tt
frequencies) T (jw) +ilwle,) —J(@fw)
. . K| LY
Magnitude Response |T (jw)| _ _
€ P / V14 (wlwy)? V14 (wylw)?
Phase Response ZT (jw) —tan”" (wlw,) tan™" (wy/w)
Transmission at w = 0 (dc) K 0
Transmission at w = 0o 0 K
3-dB Frequency w, = 1/t; T = time constant
v =CRor L/R
Bode Plots in Fig. 1.23 in Fig. 1.24

°An important exception is the all-pass STC network studied in Chapter 17.

°A filter is a circuit that passes signals in a specified frequency band (the filter passband) and stops or
severely attenuates (filters out) signals in another frequency band (the filter stopband). Filters will be
studied in Chapter 17.

"The transfer functions in Table 1.2 are given in general form. For the circuits of Fig. 1.22, K =1 and
w, = 1/CR.
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0 = —6 dB/octave
or

—20 dB/decade
—10 /
_20 _______________
|
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(b)

Figure 1.23 (a) Magnitude and (b) phase response of STC networks of the low-pass type.

determination of the time constant t of an STC circuit. The process is very simple: Set the
independent voltage or current source to zero; “grab hold” of the two terminals of the reactive
element (capacitor C or inductor L); and determine the equivalent resistance R that appears
between these two terminals. The time constant is then CR or L/R.

BODE PLOTS: In the 1930s, while working at Bell Labs, Hendrik Bode devised a simple but accurate
method for using linearized asymptotic responses to graph gain and phase shift against
frequency on a logarithmic scale. Such gain and phase presentations, together called Bode
plots, have enormous importance in the design and analysis of the frequency-dependent
behavior of systems large and small.
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20 log |ﬂle—)l (dB)
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|
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|
|
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Figure 1.24 (a) Magnitude and (b) phase response of STC networks of the high-pass type.

Figure 1.25 shows a voltage amplifier having an input resistance R, an input capacitance C,, a gain factor
W, and an output resistance R, . The amplifier is fed with a voltage source V, having a source resistance R,
and a load of resistance R, is connected to the output.

Figure 1.25 Circuit for Example 1.5.
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(a) Derive an expression for the amplifier voltage gain V,/V, as a function of frequency. From this find
expressions for the dc gain and the 3-dB frequency.

(b) Calculate the values of the dc gain, the 3-dB frequency, and the frequency at which the gain becomes
0dB (i.e., unity) for the case R, = 20k2, R, = 100 k2, C; = 60 pF, u = 144 V/V, R, =200 €2, and
R, =1kQ.

(c) Find v, () for each of the following inputs:

(i) v, =0.1sin10’t, V

(i) v;=0.1sin10°7, V
(iii) v, =0.1sin10%, V
(iv) v, =0.1sin10%, V

Solution

(a) Utilizing the voltage-divider rule, we can express V; in terms of V. as follows

Z,

V.=V,
Z,+R,

where Z, is the amplifier input impedance. Since Z, is composed of two parallel elements, it is obviously
easier to work in terms of ¥, = 1/Z,. Toward that end we divide the numerator and denominator by Z,,
thus obtaining

1
Vi=V,——
‘1+RY,

1
=V
“1+R,[(1/R) + sC|]

Thus,

v, 1
V. T+ ®/R)+5CR,

This expression can be put in the standard form for a low-pass STC network (see the top line of
Table 1.2) by extracting [1 4 (R /R,)] from the denominator; thus we have

V. 1 1

— = (1.20)
V. 14+ @RJ/R) 1+5C[(RR)/(R,+R)]
At the output side of the amplifier we can use the voltage-divider rule to write
RL
V,=nVv,
RL + Ro
This equation can be combined with Eq. (1.20) to obtain the amplifier transfer function as
V 1 1 1
-2 (1.21)

V.~ K 14+ RJ/R) 1+ R,/R;) 1 +sC[(RR)/(R,+R,))]

s
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(b)

Example 1.5 continued

We note that only the last factor in this expression is new (compared with the expression derived in
the last section). This factor is a result of the input capacitance C,, with the time constant being

RR,
‘R, +R, (1.22)
=C/(R,IR)

We could have obtained this result by inspection: From Fig. 1.25 we see that the input circuit is an
STC network and that its time constant can be found by reducing V., to zero, with the result that
the resistance seen by C; is R, in parallel with R . The transfer function in Eq. (1.21) is of the form
K/(1+ (s/w,)), which corresponds to a low-pass STC network. The dc gain is found as

V. 1 1
K=-2(6=0=pun (1.23)
V. 14+ (R/R) 1+ (R/R))
The 3-dB frequency w, can be found from
1 1
= (1.24)

Wp==—=——"—
T G(RIR)

Since the frequency response of this amplifier is of the low-pass STC type, the Bode plots for the gain
magnitude and phase will take the form shown in Fig. 1.23, where K is given by Eq. (1.23) and o, is
given by Eq. (1.24).

Substituting the numerical values given into Eq. (1.23) results in

1 1
K =144 =100 V/V
1+ (20/100) 1 4 (200/1000)

Thus the amplifier has a dc gain of 40 dB. Substituting the numerical values into Eq. (1.24) gives the
3-dB frequency

1
"~ 60 pF x (20 kQ//100 k)

1
60 x 10712 x (20 x 100/(20 4 100)) x 103

Wy

= 10° rad/s

Thus,

10°
= — =159.2kH
S 2 “

Since the gain falls off at the rate of —20 dB/decade, starting at @, (see Fig. 1.23a) the gain will reach
0 dB in two decades (a factor of 100); thus we have

Unity-gain frequency = 100 x w, = 10° rad/s or 15.92 MHz
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(¢) Tofind v, (r) we need to determine the gain magnitude and phase at 10,107, 10°, and 10° rad/s. This can
be done either approximately utilizing the Bode plots of Fig. 1.23 or exactly utilizing the expression

for the amplifier transfer function,

100

N 2P
The) =3 00) = 1 o

We shall do both:

(i) For = 10 rad/s, which is (a)0/104), the Bode plots of Fig. 1.23 suggest that |7| = K = 100 and

¢ = 0°. The transfer function expression gives |T| ~ 100 and ¢ = —tan ' 10~* ~ 0°. Thus,

v,(t) =105sin 10’1, V

(ii) For w = 10’ rad/s, which is (w,/10), the Bode plots of Fig. 1.23 suggest that |7'| ~ K = 100 and
¢ = —5.7°. The transfer function expression gives |7| = 99.5 and ¢ = —tan_' 0.1 = —5.7°. Thus,

u,(t) =9.95sin(10°1 — 5.7°), V
(iii) For w = 10° rad/s = w,, |T| = 100/+/2 = 70.7 V/V or 37 dB and ¢ = —45°. Thus,

v,(t) =7.07 sin(10°r — 45°), V

(iv) For @ = 10° rad/s, which is (100 w,), the Bode plots suggest that |7'| = 1 and ¢ = —90°. The

transfer function expression gives |7| >~ 1 and ¢ = —tan”' 100 = —89.4°. Thus,

v,(1) = 0.1 5in(10°r — 89.4°), V

1

1.6.5 Classification of Amplifiers Based on
Frequency Response

Amplifiers can be classified based on the shape of their magnitude-response curve. Figure 1.26
shows typical frequency-response curves for various amplifier types. In Fig. 1.26(a) the gain
remains constant over a wide frequency range, but falls off at low and high frequencies. This
type of frequency response is common in audio amplifiers.

As will be shown in later chapters, internal capacitances in the device (a transistor) cause
the falloff of gain at high frequencies, just as C; did in the circuit of Example 1.5. On the other
hand, the falloff of gain at low frequencies is usually caused by coupling capacitors used
to connect one amplifier stage to another, as indicated in Fig. 1.27. This practice is usually
adopted to simplify the design process of the different stages. The coupling capacitors are
usually chosen quite large (a fraction of a microfarad to a few tens of microfarads) so that
their reactance (impedance) is small at the frequencies of interest. Nevertheless, at sufficiently
low frequencies the reactance of a coupling capacitor will become large enough to cause part
of the signal being coupled to appear as a voltage drop across the coupling capacitor, thus
not reaching the subsequent stage. Coupling capacitors will thus cause loss of gain at low
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Figure 1.26 Frequency response for (a) a capacitively coupled amplifier, (b) a direct-coupled amplifier, and
(c) a tuned or bandpass amplifier.

Two amplifier
stages

| |/
Coupling /

capacitor Figure 1.27 Use of a capacitor to couple
= amplifier stages.

frequencies and cause the gain to be zero at dc. This is not at all surprising, since from
Fig. 1.27 we observe that the coupling capacitor, acting together with the input resistance
of the subsequent stage, forms a high-pass STC circuit. It is the frequency response of this
high-pass circuit that accounts for the shape of the amplifier frequency response in Fig. 1.26(a)
at the low-frequency end.

There are many applications in which it is important that the amplifier maintain its gain at
low frequencies down to dc. Furthermore, monolithic integrated-circuit (IC) technology does
not allow the fabrication of large coupling capacitors. Thus IC amplifiers are usually designed
as directly coupled or dc amplifiers (as opposed to capacitively coupled, or ac amplifiers).
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Figure 1.26(b) shows the frequency response of a dc amplifier. Such a frequency response
characterizes what is referred to as a low-pass amplifier.

In a number of applications, such as in the design of radio and TV receivers, the need arises
for an amplifier whose frequency response peaks around a certain frequency (called the center
frequency) and falls off on both sides of this frequency, as shown in Fig. 1.26(c). Amplifiers
with such a response are called tuned amplifiers, bandpass amplifiers, or bandpass filters.
A tuned amplifier forms the heart of the front-end or tuner of a communication receiver; by
adjusting its center frequency to coincide with the frequency of a desired communications
channel (e.g., a radio station), the signal of this particular channel can be received while those
of other channels are attenuated or filtered out.

1.22

D1.23

Consider a voltage amplifier having a frequency response of the low-pass STC type with a dc gain
of 60 dB and a 3-dB frequency of 1000 Hz. Find the gain in dB at f = 10 Hz, 10 kHz, 100 kHz, and
1 MHz.

Ans. 60 dB; 40 dB; 20 dB; 0 dB

Consider a transconductance amplifier having the model shown in Table 1.1 with R, = SkQ,R, =
50k, and G,, = 10 mA/V.If the amplifier load consists of aresistance R, in parallel with a capacitance
C,, convince yourself that the voltage transfer function realized, V,/V,, is of the low-pass STC type.
What is the lowest value that R, can have while a dc gain of at least 40 dB is obtained? With this value
of R, connected, find the highest value that C, can have while a 3-dB bandwidth of at least 100 kHz
is obtained.

Ans. 12.5k; 159.2 pF

D1.24 Consider the situation illustrated in Fig. 1.27. Let the output resistance of the first voltage amplifier be

1 k€2 and the input resistance of the second voltage amplifier (including the resistor shown) be 9 k2.
The resulting equivalent circuit is shown in Fig. E1.24. Convince yourself that V,/V_ is a high-pass
STC function. What is the smallest value for C that will ensure that the 3-dB frequency is not higher
than 100 Hz?
Ans. 0.16 pF

R, = 1kQ

Figure E1.24
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Summary

An electrical signal source can be represented in either
the Thévenin form (a voltage source v, in series with a
source resistance R,) or the Norton form (a current source
i; in parallel with a source resistance R,). The Thévenin
voltage v, is the open-circuit voltage between the source
terminals; the Norton current i is equal to the short-circuit
current between the source terminals. For the two
representations to be equivalent, v, and R i, must be equal.

A signal can be represented either by its waveform versus
time or as the sum of sinusoids. The latter representation
is known as the frequency spectrum of the signal.

The sine-wave signal is completely characterized by its
peak value (or rms value, which is the peak/+/2), its
frequency (w in rad/s or f in Hz; w = 2xf and f = U/T,
where T is the period in seconds), and its phase with
respect to an arbitrary reference time.

Analog signals have magnitudes that can assume any
value. Electronic circuits that process analog signals are
called analog circuits. Sampling the magnitude of an
analog signal at discrete instants of time and representing
each signal sample by a number results in a digital signal.
Digital signals are processed by digital circuits.

The simplest digital signals are obtained when the binary
system is used. An individual digital signal then assumes
one of only two possible values: low and high (say,
0V and +5 V), corresponding to logic 0 and logic 1,
respectively.

An analog-to-digital converter (ADC) provides at its
output the digits of the binary number representing the
analog signal sample applied to its input. The output
digital signal can then be processed using digital circuits.
Refer to Fig. 1.10 and Eq. (1.3).

The transfer characteristic, v, versus v,, of a linear
amplifier is a straight line with a slope equal to the
voltage gain. Refer to Fig. 1.12.

Amplifiers increase the signal power and thus require dc
power supplies for their operation.

The amplifier voltage gain can be expressed as a ratio
A, in V/V or in decibels, 20 log |A,|, dB. Similarly, for
current gain: A, A/A or 20 log |4,|, dB. For power gain:
A, W/W or 10 log A, dB.

Depending on the signal to be amplified (voltage or
current) and on the desired form of output signal (voltage
or current), there are four basic amplifier types: voltage,
current, transconductance, and transresistance amplifiers.
For the circuit models and ideal characteristics of these
four amplifier types, refer to Table 1.1. A given amplifier
can be modeled by any one of the four models, in which
case their parameters are related by the formulas in
Eqgs. (1.14) to (1.16).

A sinusoid is the only signal whose waveform is
unchanged through a linear circuit. Sinusoidal signals
are used to measure the frequency response of amplifiers.

The transfer function 7'(s) = V, (s)/V,(s) of a voltage
amplifier can be determined from circuit analysis.
Substituting s = jo gives T(jw), whose magnitude
|T(jw)| is the magnitude response, and whose phase
¢ (w) is the phase response, of the amplifier.

Amplifiers are classified according to the shape of their
frequency response, |7 (jw)|. Refer to Fig. 1.26.

Single-time-constant (STC) networks are those networks
that are composed of, or can be reduced to, one reactive
component (L or C) and one resistance (R). The time
constant 7 is either L/R or CR.

STC networks can be classified into two categories: low
pass (LP) and high pass (HP). LP networks pass dc
and low frequencies and attenuate high frequencies. The
opposite is true for HP networks.

The gain of an LP (HP) STC circuit drops by 3 dB
below the zero-frequency (infinite-frequency) value
at a frequency w, = 1/t. At high frequencies (low
frequencies) the gain falls off at the rate of 6 dB/octave
or 20 dB/decade. Refer to Table 1.2 on page 36
and Figs. 1.23 and 1.24. Further details are given in
Appendix E.



Circuit Basics

As a review of the basics of circuit analysis and in order
for the readers to gauge their preparedness for the study of
electronic circuits, this section presents a number of relevant
circuit analysis problems. For a summary of Thévenin’s and
Norton’s theorems, refer to Appendix D. The problems are
grouped in appropriate categories.

Resistors and Ohm’s Law

1.1 Ohm’s law relates V,I, and R for a resistor. For each of
the situations following, find the missing item:

(a) R=1kQ,V=5V

(b) V=5V, I=1mA

(¢) R=10k2, I =0.1 mA

(d R=100Q2,V=1V

Note: Volts, milliamps, and kilohms constitute a consistent
set of units.

1.2 Measurements taken on various resistors are shown
below. For each, calculate the power dissipated in the resistor
and the power rating necessary for safe operation using
standard components with power ratings of 1/8 W, 1/4 W,
12W, 1 W,or2W:

(a) 1kS conducting 20 mA
(b) 1kS2 conducting 40 mA
(c) 100 k€2 conducting 1 mA
(d) 10 k€2 conducting 4 mA
(e) 1k dropping 20 V

(f) 1kS2 dropping 11V

1.3 Ohm’s law and the power law for a resistor relate V,/, R,
and P, making only two variables independent. For each pair
identified below, find the other two:

(@) R=1kQ, I=5mA
(b) V=5V,I=1mA
(¢) V=10V, P =100 mW
(d) I=0.1mA, P=1mW
() R=1kQ, P=1W

Combining Resistors

1.4 You are given three resistors whose values are 10 k€2,
20 k€2, and 40 k2. How many different resistances can you
create using series and parallel combinations of these three?
List them in value order, lowest first. Be thorough and

organized. (Hint: In your search, first consider all parallel
combinations, then consider series combinations, and then
consider series-parallel combinations, of which there are two
kinds.)

1.5 In the analysis and test of electronic circuits, it is often
useful to connect one resistor in parallel with another to obtain
a nonstandard value, one which is smaller than the smaller of
the two resistors. Often, particularly during circuit testing,
one resistor is already installed, in which case the second,
when connected in parallel, is said to “shunt” the first. If the
original resistor is 10 k€2, what is the value of the shunting
resistor needed to reduce the combined value by 1%, 5%, 10%,
and 50%? What is the result of shunting a 10-k€2 resistor by
1 MQ? By 100 k2? By 10 k2?

Voltage Dividers

1.6 Figure P1.6(a) shows a two-resistor voltage divider.
Its function is to generate a voltage V,, (smaller than the
power-supply voltage V) at its output node X. The circuit
looking back at node X is equivalent to that shown in
Fig. P1.6(b). Observe that this is the Thévenin equivalent of
the voltage-divider circuit. Find expressions for V,, and R,,.

Vop
R,
X Ro x
Vo = I'VW—O
RZ v() l
- R() -
(@) (b)
Figure P1.6

1.7 A two-resistor voltage divider employing a 2-kS2 and a
3-k2 resistor is connected to a 5-V ground-referenced power
supply to provide a 2-V voltage. Sketch the circuit. Assuming
exact-valued resistors, what output voltage (measured to
ground) and equivalent output resistance result? If the
resistors used are not ideal but have a £5% manufactur-
ing tolerance, what are the extreme output voltages and
resistances that can result?

HIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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D 1.8 You are given three resistors, each of 10 k€2, and a 9-V
battery whose negative terminal is connected to ground. With
avoltage divider using some or all of your resistors, how many
positive-voltage sources of magnitude less than 9 V can you
design? List them in order, smallest first. What is the output
resistance (i.e., the Thévenin resistance) of each?

D #1.9 Two resistors, with nominal values of 4.7 k2 and 10
k<2, are used in a voltage divider with a +15-V supply to
create a nominal +5-V output. Assuming the resistor values
to be exact, what is the actual output voltage produced? Which
resistor must be shunted (paralleled) by what third resistor
to create a voltage-divider output of 5.00 V? If an output
resistance of exactly 3.33 k2 is also required, what do you
suggest?

Current Dividers

1.10 Currentdividers play an importantrole in circuit design.
Therefore it is important to develop a facility for dealing
with current dividers in circuit analysis. Figure P1.10 shows a
two-resistor current divider fed with an ideal current source /.
Show that

L=
R +R,

and find the voltage V that develops across the current divider.

+ o

Y |ye

I R, R, V

Figure P1.10

D 1.11 Design a simple current divider that will reduce the
current provided to a 10-k<2 load to one-third of that available
from the source.

D 1.12 A designer searches for a simple circuit to provide
one-fifth of a signal current / to a load resistance R. Suggest
a solution using one resistor. What must its value be?
What is the input resistance of the resulting current divider?
For a particular value R, the designer discovers that the
otherwise-best-available resistor is 10% too high. Suggest two
circuit topologies using one additional resistor that will solve

this problem. What is the value of the resistor required in
each case? What is the input resistance of the current divider
in each case?

D 1.13 A particular electronic signal source generates cur-
rents in the range 0 mA to 0.5 mA under the condition that
its load voltage not exceed 1 V. For loads causing more than
1V to appear across the generator, the output current is no
longer assured but will be reduced by some unknown amount.
This circuit limitation, occurring, for example, at the peak of
a sine-wave signal, will lead to undesirable signal distortion
that must be avoided. If a 10-kS2 load is to be connected, what
must be done? What is the name of the circuit you must use?
How many resistors are needed? What s (are) the(ir) value(s)?
What is the range of current through the load?

Thévenin Equivalent Circuits

1.14 For the circuit in Fig. P1.14, find the Thévenin equiva-
lent circuit between terminals (a) 1 and 2, (b) 2 and 3, and (c¢)
1 and 3.

O |

1 kQ

\)

1.5V —

1 kQ

Figure P1.14

1.15 Through repeated application of Thévenin’s theorem,
find the Thévenin equivalent of the circuit in Fig. P1.15
between node 4 and ground, and hence find the current that
flows through a load resistance of 3 k€2 connected between
node 4 and ground.

1 20kQ 2 20kQ

3 20kQ 4

10V

Figure P1.15

EIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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1.16 For the circuit shown in Fig. P1.16, find the current in
each of the three resistors and the voltage (with respect to
ground) at their common node using two methods:

(a) Loop Equations: Define branch currents /, and /7, in R, and
R,, respectively; write two equations; and solve them.

(b) Node Equation: Define the node voltage V at the common
node; write a single equation; and solve it.

Which method do you prefer? Why?

+10V
+5V
R, R
5kQ 10 kQ
Ry
2kQ
Figure P1.16

1.17 The circuit shown in Fig. P1.17 represents the equiva-
lent circuit of an unbalanced bridge. It is required to calculate
the current in the detector branch (R;) and the voltage across it.
Although this can be done by using loop and node equations,

+10V

Figure P1.17 Figure P1.19

Problems 47

a much easier approach is possible: Find the Thévenin
equivalent of the circuit to the left of node 1 and the Thévenin
equivalent of the circuit to the right of node 2. Then solve the
resulting simplified circuit.

*1.18 For the circuit in Fig. P1.18, find the equivalent
resistance to ground, R,,. To do this, apply a voltage V,
between terminal X and ground and find the current drawn
from V . Note that you can use particular special properties
of the circuit to get the result directly! Now, if R, is raised to
1.2 k2, what does Req become?

X
O
ch
R, R,
1 kQ 1 kQ
Rs
1 kQ
R, R,
1 kQ 1 kQ
Figure P1.18

1.19 Derive an expression for v, /v, for the circuit shown in
Fig. P1.19.

HIN = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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AC Circuits

1.20 The periodicity of recurrent waveforms, such as sine
waves or square waves, can be completely specified using
only one of three possible parameters: radian frequency, w,
in radians per second (rad/s); (conventional) frequency, f,
in hertz (Hz); or period 7, in seconds (s). As well, each
of the parameters can be specified numerically in one
of several ways: using letter prefixes associated with the
basic units, using scientific notation, or using some com-
bination of both. Thus, for example, a particular period
may be specified as 100ns, 0.1 s, 10" ps, 10° ps, or
1 x 107 s. (For the definition of the various prefixes
used in electronics, see AppendixJ.) For each of the
measures listed below, express the trio of terms in scientific
notation associated with the basic unit (e.g., 10" s rather
than 10™'s).

(@ T=10"ms

(b) f=1GHz

(¢) w=6.28 x 10" rad/s
(d T=10s

(e) f=60Hz

() w=1krad/s

() f = 1900 MHz

1.21 Find the complex impedance, Z, of each of the
following basic circuit elements at 60 Hz, 100 kHz, and
1 GHz:

(a) R=1kQ
(b) C=10nF
(c) C=10pF
(d) L=10mH
(e) L=1pH

1.22 Find the complex impedance at 10 kHz of the following
networks:

(a) 1Kk in series with 10 nF

(b) 10 k<2 in parallel with 0.01 pF
(c) 100 k€2 in parallel with 100 pF
(d) 100 €2 in series with 10 mH

Section 1.1: Signals

1.23 Any given signal source provides an open-circuit

voltage, v ., and a short-circuit current, i... For the following

oc?

sources, calculate the internal resistance, R; the Norton
current, i;; and the Thévenin voltage, v,:

(@)uv,=1V,i,=0.1mA
(b) v, =0.1V,i,=1pA

1.24 A particular signal source produces an output of 40 mV
when loaded by a 100-kS2 resistor and 10 mV when loaded
by a 10-kS2 resistor. Calculate the Thévenin voltage, Norton
current, and source resistance.

1.25 A temperature sensor is specified to provide 2 mV/°C.
When connected to a load resistance of 5 k€2, the output
voltage was measured to change by 10 mV, corresponding to
achange in temperature of 10°C. What is the source resistance
of the sensor?

1.26 Refer to the Thévenin and Norton representations of the
signal source (Fig. 1.1). If the current supplied by the source
is denoted i, and the voltage appearing between the source
output terminals is denoted v,, sketch and clearly label v,
versus i, for 0 <i <i.

1.27 The connection of a signal source to an associated
signal processor or amplifier generally involves some degree
of signal loss as measured at the processor or amplifier
input. Considering the two signal-source representations
shown in Fig. 1.1, provide two sketches showing each
signal-source representation connected to the input terminals
(and corresponding input resistance) of a signal processor.
What signal-processor input resistance will result in 95% of
the open-circuit voltage being delivered to the processor?
What input resistance will result in 95% of the short-circuit
signal current entering the processor?

Section 1.2: Frequency Spectrum of Signals

1.28 To familiarize yourself with typical values of angular
frequency w, conventional frequency f, and period T,
complete the entries in the following table:

Case w (rad/s) f(Hz) T (s)
a 5% 10°
b 2 x 10°
@ 1x107"°
d 60
e 6.28 x 10*
f 1x107°

HIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem



1.29 For the following peak or rms values of some important
sine waves, calculate the corresponding other value:

(a) 117 V rms, a household-power voltage in North America

(b) 339V peak, a somewhat common peak voltage in
rectifier circuits

(c) 220 V rms, a household-power voltage in parts of Europe

(d) 220kV rms, a high-voltage transmission-line voltage in
North America

1.30 Give expressions for the sine-wave voltage signals
having:

(a) 10-V peak amplitude and 1-kHz frequency
(b) 120-V rms and 60-Hz frequency

(c) 0.2-V peak-to-peak and 2000-rad/s frequency
(d) 100-mV peak and 1-ms period

1.31 Using the information provided by Eq.(1.2) in
association with Fig. 1.5, characterize the signal repre-
sented by v(¢) = 1/2 + 2/7(sin2000rt + %sin 6000t +
ésin 10,000t + ---). Sketch the waveform. What is its
average value? Its peak-to-peak value? Its lowest value? Its
highest value? Its frequency? Its period?

1.32 Measurements taken of a square-wave signal using a
frequency-selective voltmeter (called a spectrum analyzer)
show its spectrum to contain adjacent components (spectral
lines) at 98 kHz and 126 kHz of amplitudes 63 mV and
49 mV, respectively. For this signal, what would direct
measurement of the fundamental show its frequency and
amplitude to be? What is the rms value of the fundamental?
What are the peak-to-peak amplitude and period of the
originating square wave?

1.33 Find the amplitude of a symmetrical square wave of
period 7 that provides the same power as a sine wave of peak

Problems 49

amplitude V and the same frequency. Does this result depend
on equality of the frequencies of the two waveforms?

Section 1.3: Analog and Digital Signals

1.34 Give the binary representation of the following decimal
numbers: 0, 6, 11, 28, and 59.

1.35 Consider a 4-bit digital word b,b,b, b, in a format called
signed-magnitude, in which the most significant bit, b, is
interpreted as a sign bit—O0 for positive and 1 for negative
values. List the values that can be represented by this scheme.
What is peculiar about the representation of zero? For a
particular analog-to-digital converter (ADC), each change in
b, corresponds to a 0.5-V change in the analog input. What
is the full range of the analog signal that can be represented?
What signed-magnitude digital code results for an input of
+2.5 V? For —3.0 V? For 4+-2.7 V? For —2.8 V?

1.36 Consider an N-bit ADC whose analog input varies
between 0 and V., (where the subscript F'S denotes “full
scale”).

(a) Show that the least significant bit (LSB) corresponds to
a change in the analog signal of VFS/(ZN — 1). This is the
resolution of the converter.

(b) Convince yourself that the maximum error in the
conversion (called the quantization error) is half the
resolution; that is, the quantization error = VFS/Z(ZN = b,

(c) For Vx =5V, how many bits are required to obtain a
resolution of 2 mV or better? What is the actual resolution
obtained? What is the resulting quantization error?

1.37 Figure P1.37 shows the circuit of an N-bit
digital-to-analog converter (DAC). Each of the N bits of
the digital word to be converted controls one of the switches.

Vref -

2R 4R 8R 2NR
by by by by
0 T 1 0 T 1 0 T 1 0 T 1
- - - - i
o —>
=
Figure P1.37
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When the bit is 0, the switch is in the position labeled 0;
when the bit is 1, the switch is in the position labeled 1.
The analog output is the current i,,.V, is a constant reference
voltage.

(a) Show that

. Vref bl b2 bN
=g\ttt

(b) Which bit is the LSB? Which is the MSB?

(c) ForV, =10 V,R=10k<2, and N = 8, find the maximum
value of i, obtained. What is the change in i, resulting
from the LSB changing from 0 to 1?

1.38 In compact-disc (CD) audio technology, the audio
signal is sampled at 44.1 kHz. Each sample is represented
by 16 bits. What is the speed of this system in bits
per second?

Section 1.4: Amplifiers

1.39 Various amplifier and load combinations are measured
as listed below using rms values. For each, find the voltage,
current, and power gains (A,,A,, and A , respectively) both as

2
ratios and in dB:

(a) v, =100mV, i, =100 pA, v, =10V, R, = 100 Q
(b) v, =10V, i,=100nA, v, =1V, R, = 10kQ
(© v,=1V,i;=1mA,v,=5V,R, =10 Q

1.40 An amplifier operating from +3-V supplies provides
a 2.2-V peak sine wave across a 100-€2 load when provided
witha(.2-V peak input from which 1.0 mA peak is drawn. The
average current in each supply is measured to be 20 mA.Find
the voltage gain, current gain, and power gain expressed as
ratios and in decibels as well as the supply power, amplifier
dissipation, and amplifier efficiency.

1.41 Anamplifier using balanced power supplies is known to
saturate for signals extending within 1.0 V of either supply.
For linear operation, its gain is 200 V/V. What is the rms
value of the largest undistorted sine-wave output available,
and input needed, with +5-V supplies? With +=10-V supplies?
With £15-V supplies?

1.42 Symmetrically saturating amplifiers, operating in the
so-called clipping mode, can be used to convert sine waves
to pseudo-square waves. For an amplifier with a small-signal
gain of 1000 and clipping levels of £10 V, what peak value of
input sinusoid is needed to produce an output whose extremes
are just at the edge of clipping? Clipped 90% of the time?
Clipped 99% of the time?

Section 1.5: Circuit Models for Amplifiers

1.43 Consider the voltage-amplifier circuit model shown in
Fig. 1.16(b), in which A,, = 100 V/V under the following
conditions:

(a) R,=10R,, R, = 10R,
(b) R,=R., R, =R,
(¢) R,=RJ/10, R, =R,/10

Calculate the overall voltage gain v, /v, in each case, expressed
both directly and in decibels.

1.44 An amplifier with 40 dB of small-signal, open-circuit
voltage gain, an input resistance of 1 M, and an output
resistance of 100 €2, drives a load of 500 2. What voltage
and power gains (expressed in dB) would you expect
with the load connected? If the amplifier has a peak
output-current limitation of 20 mA, what is the rms value
of the largest sine-wave input for which an undistorted
output is possible? What is the corresponding output power
available?

1.45 A 10-mV signal source having an internal resistance
of 100 k€2 is connected to an amplifier for which the input
resistance is 10 k€2, the open-circuit voltage gain is 1000 V/V,
and the output resistance is 1 k2. The amplifier is connected
in turn to a 100-€2 load. What overall voltage gain results as
measured from the source internal voltage to the load? Where
did all the gain go? What would the gain be if the source
was connected directly to the load? What is the ratio of these
two gains? This ratio is a useful measure of the benefit the
amplifier brings.

1.46 A buffer amplifier with a gain of 1 V/V has an input
resistance of 1 M and an output resistance of 20 Q. It
is connected between a 1-V, 200-k2 source and a 100-Q2
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load. What load voltage results? What are the corresponding
voltage, current, and power gains (in dB)?

1.47 Consider the cascade amplifier of Example 1.3. Find the
overall voltage gain v, /v, obtained when the first and second
stages are interchanged. Compare this value with the result in
Example 1.3, and comment.

1.48 You are given two amplifiers, A and B, to connect
in cascade between a 10-mV, 100-kS2 source and a 100-$2
load. The amplifiers have voltage gain, input resistance, and
output resistance as follows: for A, 100 V/V, 100 k€2, 10 k€2,
respectively; for B, 10 V/V, 10 k2, 1 k€2, respectively. Your
problem is to decide how the amplifiers should be connected.
To proceed, evaluate the two possible connections between
source S and load L, namely, SABL and SBAL. Find the
voltage gain for each both as a ratio and in decibels. Which
amplifier arrangement is best?

D *1.49 A designer has available voltage amplifiers with an
input resistance of 10 k€2, an output resistance of 1 k€2, and
an open-circuit voltage gain of 10. The signal source has a
10-kS2 resistance and provides a 5-mV rms signal, and it is
required to provide a signal of at least 3 V rms to a 200-2
load. How many amplifier stages are required? What is the
output voltage actually obtained?

D #1.50 Design an amplifier that provides 0.5 W of signal
power to a 100-€2 load resistance. The signal source provides
a 30-mV rms signal and has a resistance of 0.5 M. Three
types of voltage-amplifier stages are available:

(a) A high-input-resistance type with R, =1 MQ, A, = 10,
and R, = 10 kQ

(b) A high-gain type with R,=10kQ, A, =100, and
R, =1kQ

(c) A low-output-resistance type with R, =10 k2, A, =1,
and R, =20 Q2

Design a suitable amplifier using a combination of these
stages. Your design should utilize the minimum number of
stages and should ensure that the signal level is not reduced
below 10 mV at any point in the amplifier chain. Find the load
voltage and power output realized.

Problems 51

D *1.51 It is required to design a voltage amplifier to be
driven from a signal source having a 5-mV peak amplitude
and a source resistance of 10 k2 to supply a peak output of
2V across a 1-k<2 load.

(a) What is the required voltage gain from the source to the
load?

(b) If the peak current available from the source is 0.1 pA,
what is the smallest input resistance allowed? For the
design with this value of R;, find the overall current gain
and power gain.

(c) If the amplifier power supply limits the peak value of
the output open-circuit voltage to 3 V, what is the largest
output resistance allowed?

(d) For the design with R, as in (b) and R, as in (c), what is the

. N ..
required value of open-circuit voltage gain, i.e., —* ,

iR, _
of the amplifier? ‘

(e) If, as a possible design option, you are able to increase R,
to the nearest value of the form 1 x 10"  and to decrease
R, to the nearest value of the form 1 x 10" Q, find (i)
the input resistance achievable; (ii) the output resistance
achievable; and (iii) the open-circuit voltage gain now
required to meet the specifications.

D 1.52 A voltage amplifier with an input resistance of
20kS2, an output resistance of 100 €2, and a gain of
1000 V/V is connected between a 100-k$2 source with an
open-circuit voltage of 10 mV and a 100-$2 load. For this
situation:

(a) What output voltage results?

(b) What is the voltage gain from source to load?

(c) What is the voltage gain from the amplifier input to the
load?

(d) If the output voltage across the load is twice that
needed and there are signs of internal amplifier overload,
suggest the location and value of a single resistor
that would produce the desired output. Choose an
arrangement that would cause minimum disruption to an
operating circuit. (Hint: Use parallel rather than series
connections.)
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1.53 A voltage amplifier delivers 200 mV across a load
resistance of 1k€. It was found that the output voltage
decreases by 5 mV when R, is decreased to 780 2. What are
the values of the open-circuit output voltage and the output
resistance of the amplifier?

1.54 A current amplifier supplies 1 mA to a load resistance
of 1 k2. When the load resistance is increased to 12 k€2, the
output current decreases to 0.5 mA. What are the values of
the short-circuit output current and the output resistance of
the amplifier?

1.55 A current amplifier for which R, = 100 ©, R, =
10kS2, and A, = 100 A/A is to be connected between a
100-mV source with a resistance of 10k and a load of
1 k2. What are the values of current gain i /i;, of voltage
gain v /v,, and of power gain expressed directly and in
decibels?

1.56 A transconductance amplifier with R, = 2k, G,, =
60mA/V, and R, = 20k is fed with a voltage source
having a source resistance of 1 k2 and is loaded with a 1-k2
resistance. Find the voltage gain realized.

D **1.57 A designer is required to provide, across a
10-k2 load, the weighted sum, v, = 10v, 4 20wv,, of input
signals v, and v,, each having a source resistance of 10
k2. She has a number of transconductance amplifiers for
which the input and output resistances are both 10k
and G, = 20 mA/V, together with a selection of suitable
resistors. Sketch an appropriate amplifier topology with
additional resistors selected to provide the desired result.
Your design should utilize the minimum number of ampli-
fiers and resistors. (Hint: In your design, arrange to add
currents.)

1.58 Figure P1.58 shows a transconductance amplifier
whose output is fed back to its input. Find the input resistance
R,, of the resulting one-port network. (Hint: Apply a test
voltage v, between the two input terminals, and find the
current i, drawn from the source. Then, R,, = v /i .)

IEIW = Multisim/PSpice; * = difficult problem; ** = more difficult; ***
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Figure P1.58

D 1.59 It is required to design an amplifier to sense the
open-circuit output voltage of a transducer and to provide a
proportional voltage across a load resistor. The equivalent
source resistance of the transducer is specified to vary in
the range of 1 k2 to 10 k€2. Also, the load resistance varies
in the range of 1k to 10 k2. The change in load voltage
corresponding to the specified change in R, should be 10% at
most. Similarly, the change in load voltage corresponding to
the specified change in R, should be limited to 10%. Also,
corresponding to a 10-mV transducer open-circuit output
voltage, the amplifier should provide a minimum of 1 V
across the load. What type of amplifier is required? Sketch
its circuit model, and specify the values of its parameters.
Specify appropriate values for R, and R, of the form
1x10" Q.

D 1.60 It is required to design an amplifier to sense the
short-circuit output current of a transducer and to provide
a proportional current through a load resistor. The equivalent
source resistance of the transducer is specified to vary in
the range of 1 k2 to 10 k2. Similarly, the load resistance
is known to vary over the range of 1k to 10kS2. The
change in load current corresponding to the specified change
in R is required to be limited to 10%. Similarly, the change
in load current corresponding to the specified change in R,

= very challenging; D = design problem



should be 10% at most. Also, for a nominal short-circuit
output current of the transducer of 10 wA, the amplifier
is required to provide a minimum of 1 mA through the
load. What type of amplifier is required? Sketch the circuit
model of the amplifier, and specify values for its param-
eters. Select appropriate values for R, and R, in the form
1 x10" Q.

D 1.61 It is required to design an amplifier to sense the
open-circuit output voltage of a transducer and to provide
a proportional current through a load resistor. The equivalent
source resistance of the transducer is specified to vary in the
range of 1k to 10 k2. Also, the load resistance is known
to vary in the range of 1k to 10 k2. The change in the
current supplied to the load corresponding to the specified
change in R is to be 10% at most. Similarly, the change in
load current corresponding to the specified change in R, is to
be 10% at most. Also, for a nominal transducer open-circuit
output voltage of 10 mV, the amplifier is required to provide
a minimum of 1 mA current through the load. What type of
amplifier is required? Sketch the amplifier circuit model, and
specify values for its parameters. For R, and R , specify values
in the form 1 x 10" Q.

D 1.62 It is required to design an amplifier to sense the
short-circuit output current of a transducer and to provide a
proportional voltage across a load resistor. The equivalent
source resistance of the transducer is specified to vary in
the range of 1 k2 to 10 k2. Similarly, the load resistance is
known to vary in the range of 1k to 10 k2. The change
in load voltage corresponding to the specified change in
R, should be 10% at most. Similarly, the change in load
voltage corresponding to the specified change in R, is to be
limited to 10%. Also, for a nominal transducer short-circuit
output current of 10 wA, the amplifier is required to provide
a minimum voltage across the load of 1 V. What type of
amplifier is required? Sketch its circuit model, and specify
the values of the model parameters. For R; and R, specify
appropriate values in the form 1 x 10" Q.

Problems 53

1.63 For the circuit in Fig. P1.63, show that
v, —BR,

c

v, r,+(B+DR,
and

1}(, RE

Y, B Ry +1[r,/(B+ D]

Ry

<
el

Figure P1.63

1.64 An amplifier with an input resistance of 5 k€2, when
driven by a current source of 1 WA and a source resistance
of 200 k€2, has a short-circuit output current of 5 mA and
an open-circuit output voltage of 10 V. If the amplifier is
used to drive a 2-kS2 load, give the values of the voltage
gain, current gain, and power gain expressed as ratios and in
decibels.

1.65 Figure P1.65(a) shows two transconductance amplifiers
connected in a special configuration. Find v, in terms of
v, and v,. Let g, = 100mA/V and R = 5kQ. If v, =
v, = 1V, find the value of v, Also, find v, for the case
v, = 1.01V and v, = 0.99 V. (Note: This circuit is called
a differential amplifier and is given the symbol shown
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in Fig. P1.65(b). A particular type of differential amplifier
known as an operational amplifier will be studied in
Chapter 2.)

U1 EmU1

%) EmV2

(a)

1/10 aF

(%3 o—-

Figure P1.65

1.66 Any linear two-port network including linear amplifiers
can be represented by one of four possible parameter sets,
given in Appendix C. For the voltage amplifier, the most
convenient representation is in terms of the g parameters. If
the amplifier input port is labeled as port 1 and the output port
as port 2, its g-parameter representation is described by the
two equations:

I=g,Vi+8,L

Vo=8,V,+8x»l,

Figure P1.66 shows an equivalent circuit representation of
these two equations. By comparing this equivalent circuit

to that of the voltage amplifier in Fig. 1.16(a), identify corre-
sponding currents and voltages as well as the correspondence
between the parameters of the amplifier equivalent circuit and
the g parameters. Hence give the g parameter that corresponds
to each of R;,A,,, and R,. Notice that there is an additional g
parameter with no correspondence in the amplifier equivalent
circuit. Which one? What does it signify? What assumption
did we make about the amplifier that resulted in the absence
of this particular g parameter from the equivalent circuit in
Fig. 1.16(a)?

1
- 8 L2
O
+ +
1
Vi o) Vs
81 =
: 812> 821V
o
Figure P1.66

Section 1.6: Frequency Response
of Amplifiers

1.67 Use the voltage-divider rule to derive the transfer
functions 7'(s) =V, (s)/V.(s) of the circuits shown in Fig. 1.22,
and show that the transfer functions are of the form given at
the top of Table 1.2.

1.68 Figure P1.68 shows a signal source connected to the
input of an amplifier. Here R, is the source resistance, and
R, and C, are the input resistance and input capacitance,
respectively, of the amplifier. Derive an expression for
V.(s)/V (s), and show that it is of the low-pass STC type. Find
the 3-dB frequency for the case R, = 10 k2, R, =40 k<2, and
C,=5pF.

1

Figure P1.68
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1.69 For the circuit shown in Fig. P1.69, find the transfer
function T'(s) =V, (s)/V,(s), and arrange it in the appropriate
standard form from Table 1.2. Is this a high-pass or a low-pass
network? What is its transmission at very high frequencies?
[Estimate this directly, as well as by letting s — oo in your
expression for 7'(s).] What is the corner frequency w,? For
R, =10k, R, =40k, and C = 1 uF, find f;. What is the
value of |T'(jw,)|?

Figure P1.69

D 1.70 It is required to couple a voltage source V, with
a resistance R, to a load R, via a capacitor C. Derive an
expression for the transfer function from source to load
(i.e., V,/V,), and show that it is of the high-pass STC type.
For R, = 5k and R, = 20 k<2, find the smallest coupling
capacitor that will result in a 3-dB frequency no greater than
100 Hz.

Problems 55

1.71 Measurement of the frequency response of an amplifier
yields the data in the following table:

f (Hz) | T| (dB) Z7()
0 40 0
100 40 0
1000
10* 37 —45
10° 20
0

Provide plausible approximate values for the missing entries.
Also, sketch and clearly label the magnitude frequency
response (i.e., provide a Bode plot) for this amplifier.

1.72 Measurement of the frequency response of an amplifier
yields the data in the following table:

f (Hz) 10 10> 10° 10* 10° 10° 10’

0 20 37 40 37 20 O

|T[(dB)

Provide approximate plausible values for the missing table
entries. Also, sketch and clearly label the magnitude fre-
quency response (Bode plot) of this amplifier.

1.73 The unity-gain voltage amplifiers in the circuit of
Fig. P1.73 have infinite input resistances and zero output

Figure P1.73
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resistances and thus function as perfect buffers. Furthermore,
assume that their gain is frequency independent. Convince
yourself that the overall gain V,/V, will drop by 3 dB below
the value at dc at the frequency for which the gain of each
RC circuit is 1.0 dB down. What is that frequency in terms
of CR?

1.74 A manufacturing error causes an internal node of a
high-frequency amplifier whose Thévenin-equivalent node
resistance is 100 k€2 to be accidentally shunted to ground by
a capacitor (i.e., the node is connected to ground through a
capacitor). If the measured 3-dB bandwidth of the amplifier
is reduced from the expected 5 MHz to 100 kHz, estimate the
value of the shunting capacitor. If the original cutoff frequency
can be attributed to a small parasitic capacitor at the same
internal node (i.e., between the node and ground), what would
you estimate it to be?

D #1.75 A designer wishing to lower the overall upper 3-dB
frequency of a three-stage amplifier to 10 kHz considers
shunting one of two nodes: Node A, between the output
of the first stage and the input of the second stage, and
Node B, between the output of the second stage and the
input of the third stage, to ground with a small capacitor.
While measuring the overall frequency response of the
amplifier, she connects a capacitor of 1 nF, first to node
A and then to node B, lowering the 3-dB frequency from
3 MHz to 200 kHz and 20 kHz, respectively. If she knows
that each amplifier stage has an input resistance of 100 k<2,
what output resistance must the driving stage have at
node A? At node B? What capacitor value should she
connect to which node to solve her design problem most
economically?

D 1.76 An amplifier with an input resistance of 100 k2
and an output resistance of 1 k€2 is to be capacitor-coupled
to a 10-kQ2 source and a 1-k2 load. Available capacitors
have values only of the form 1 x 10"F. What are
the values of the smallest capacitors needed to ensure
that the corner frequency associated with each is less
than 100 Hz? What actual corner frequencies result?
For the situation in which the basic amplifier has an
open-circuit voltage gain (A ,,,) of 100 V/V, find an expression
for T(s) =V, (s)/V,(s).

*1.77 A voltage amplifier has the transfer function

B 1000

A, = -
S 10
(1 +]105)<l+jf>

Using the Bode plots for low-pass and high-pass STC
networks (Figs. 1.23 and 1.24), sketch a Bode plot for |A
Give approximate values for the gain magnitude at f =10 Hz,
10" Hz, 10° Hz, 10" Hz, 10" Hz, 10° Hz, 10’ Hz, and 10" Hz.
Find the bandwidth of the amplifier (defined as the frequency
range over which the gain remains within 3 dB of the

ol

maximum value).

#*1.78 For the circuit shown in Fig. P1.78, first evaluate
T.(s) = V.(s)/V.(s) and the corresponding cutoff (corner)
frequency. Second, evaluate 7,(s) = V,(s)/V,(s) and the
corresponding cutoff frequency. Put each of the transfer
functions in the standard form (see Table 1.2), and combine
them to form the overall transfer function, 7'(s) = 7,(s) x
T,(s). Provide a Bode magnitude plot for |7 (jw)|. What is
the bandwidth between 3-dB cutoff points?

C,
R,
100 kO 100 nF
I .
+ I +
% C Vi R, Rs Vo
10 pF G,V 100 kQ) 10 kQ)
G, = 100 mA/V

Figure P1.78
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D *¥1.79 A transconductance amplifier having the equiva-
lent circuit shown in Table 1.1 is fed with a voltage source V
having a source resistance R, and its output is connected to a
load consisting of a resistance R, in parallel with a capacitance
C, . For given values of R, R, , and C,, it is required to specify
the values of the amplifier parameters R;,G,,, and R, to meet

the following design constraints:

(a) At most, x% of the input signal is lost in coupling the
signal source to the amplifier (i.e., V, > [1 — (x/100)]V,).

(b) The 3-dB frequency of the amplifier is equal to or greater
than a specified value f; .

(c) The dc gain V, /V_ is equal to or greater than a specified
value A,.

Show that these constraints can be met by selecting

100
R>(——1)R
X

RO < ;
2nf s C. — (1/R,)
AJ/[1 — (x/100)]
"7 (RIR)
Find R.R,, and G, for R, = 10kQ, x = 10%, A, =
100 V/V,R, = 10k, C, =20 pF, and f, ,; = 2 MHz.

#1.80 Use the voltage-divider rule to find the transfer
function V, (s)/V,(s) of the circuit in Fig. P1.80. Show that
the transfer function can be made independent of frequency
if the condition C,R, = C,R, applies. Under this condition

Problems 57

the circuit is called a compensated attenuator and is
frequently employed in the design of oscilloscope probes.
Find the transmission of the compensated attenuator in terms
of R, and R,.

Figure P1.80

*1.81 An amplifier with a frequency response of the type
shown in Fig. 1.21 is specified to have a phase shift of
magnitude no greater than 5.7° over the amplifier bandwidth,
which extends from 100 Hz to 1kHz. It has been found
that the gain falloff at the low-frequency end is determined
by the response of a high-pass STC circuit and that at the
high-frequency end it is determined by a low-pass STC
circuit. What do you expect the corner frequencies of these
two circuits to be? What is the drop in gain in decibels
(relative to the maximum gain) at the two frequencies that
define the amplifier bandwidth? What are the frequencies at
which the drop in gain is 3 dB? (Hint: Refer to Figs. 1.23
and 1.24.)
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IN THIS CHAPTER YOU WILL LEARN

—

. The terminal characteristics of the ideal op amp.
2. How to analyze circuits containing op amps, resistors, and capacitors.
3. How to use op amps to design amplifiers having precise characteristics.

4. How to design more sophisticated op-amp circuits, including summing amplifiers,
instrumentation amplifiers, integrators, and differentiators.

5. Important nonideal characteristics of op amps and how these limit the performance
of basic op-amp circuits.

Introduction

Having learned basic amplifier concepts and terminology, we are now ready to undertake the
study of a circuit building block of universal importance: the operational amplifier (op amp).
Op amps have been in use for a long time, their initial applications being primarily in the areas
of analog computation and sophisticated instrumentation. Early op amps were constructed
from discrete components (vacuum tubes and then transistors, and resistors), and their cost was
prohibitively high (tens of dollars). In the mid-1960s the first integrated-circuit (IC) op amp
was produced. This unit (the A 709) was made up of a relatively large number of transistors
and resistors all on the same silicon chip. Although its characteristics were poor (by today’s
standards) and its price was still quite high, its appearance signaled a new era in electronic
circuit design. Electronics engineers started using op amps in large quantities, which caused
their price to drop dramatically. They also demanded better-quality op amps. Semiconductor
manufacturers responded quickly, and within the span of a few years, high-quality op
amps became available at extremely low prices (tens of cents) from a large number of
suppliers.

One of the reasons for the popularity of the op amp is its versatility. As we will shortly
see, one can do almost anything with op amps! Equally important is the fact that the IC op
amp has characteristics that closely approach the assumed ideal. This implies that it is quite
easy to design circuits using the IC op amp. Also, op-amp circuits work at performance levels
that are quite close to those predicted theoretically. It is for this reason that we are studying
op amps at this early stage. It is expected that by the end of this chapter the reader should be
able to successfully design nontrivial circuits using op amps.

As already implied, an IC op amp is made up of a large number (about 20) of transistors
together with resistors, and (usually) one capacitor connected in a rather complex circuit. Since
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we have not yet studied transistor circuits, the circuit inside the op amp will not be discussed
in this chapter. Rather, we will treat the op amp as a circuit building block and study its
terminal characteristics and its applications. This approach is quite satisfactory in many
op-amp applications. Nevertheless, for the more difficult and demanding applications it is quite
useful to know what is inside the op-amp package. This topic will be studied in Chapter 13.
More advanced applications of op amps will appear in later chapters.

2.1 The Ideal Op Amp
2.1.1 The Op-Amp Terminals

From a signal point of view the op amp has three terminals: two input terminals and one
output terminal. Figure 2.1 shows the symbol we shall use to represent the op amp. Terminals
1 and 2 are input terminals, and terminal 3 is the output terminal. As explained in Section
1.4, amplifiers require dc power to operate. Most IC op amps require two dc power supplies,
as shown in Fig. 2.2. Two terminals, 4 and 5, are brought out of the op-amp package and
connected to a positive voltage V.. and a negative voltage — V., respectively. In Fig. 2.2(b) we
explicitly show the two dc power supplies as batteries with a common ground. It is interesting
to note that the reference grounding point in op-amp circuits is just the common terminal of
the two power supplies; that is, no terminal of the op-amp package is physically connected
to ground. In what follows we will not, for simplicity, explicitly show the op-amp power
supplies.

Figure 2.1 Circuit symbol for the op amp.

— Vg

(a) (b)

Figure 2.2 The op amp shown connected to dc power supplies.
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In addition to the three signal terminals and the two power-supply terminals, an op amp
may have other terminals for specific purposes. These other terminals can include terminals
for frequency compensation and terminals for offset nulling; both functions will be explained
in later sections.

2.1 What is the minimum number of terminals required by a single op amp? What is the minimum number
of terminals required on an integrated-circuit package containing four op amps (called a quad op amp)?
Ans. 5; 14

2.1.2 Function and Characteristics of the Ideal Op Amp

We now consider the circuit function of the op amp. The op amp is designed to sense the
difference between the voltage signals applied at its two input terminals (i.e., the quantity
v, — v,), multiply this by a number A, and cause the resulting voltage A(v, — v,) to appear
at output terminal 3. Thus v; = A(v, — v,). Here it should be emphasized that when we talk
about the voltage at a terminal we mean the voltage between that terminal and ground; thus
v, means the voltage applied between terminal 1 and ground.

The ideal op amp is not supposed to draw any input current; that is, the signal current
into terminal 1 and the signal current into terminal 2 are both zero. In other words, the input
impedance of an ideal op amp is supposed to be infinite.

How about the output terminal 3? This terminal is supposed to act as the output terminal
of an ideal voltage source. That is, the voltage between terminal 3 and ground will always
be equal to A(v, — v,), independent of the current that may be drawn from terminal 3 into
a load impedance. In other words, the output impedance of an ideal op amp is supposed
to be zero.

Putting together all of the above, we arrive at the equivalent circuit model shown in
Fig. 2.3. Note that the output is in phase with (has the same sign as) v, and is out of phase with
(has the opposite sign of) v,. For this reason, input terminal 1 is called the inverting input
terminal and is distinguished by a “—” sign, while input terminal 2 is called the noninverting
input terminal and is distinguished by a “+” sign.

As can be seen from the above description, the op amp responds only to the difference
signal v, — v, and hence ignores any signal common to both inputs. That is, if v, = v, =1V,
then the output will (ideally) be zero. We call this property common-mode rejection, and
we conclude that an ideal op amp has zero common-mode gain or, equivalently, infinite
common-mode rejection. We will have more to say about this point later. For the time
being note that the op amp is a differential-input, single-ended-output amplifier, with the
latter term referring to the fact that the output appears between terminal 3 and ground.'

'Some op amps are designed to have differential outputs. This topic will not be discussed in this book.
Rather, we confine ourselves here to single-ended-output op amps, which constitute the vast majority
of commercially available op amps.
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Inverting input

Output

¥

(Power-supply
common terminal)

%)
— Noninverting input

Figure 2.3 Equivalent circuit of the ideal op amp.

Furthermore, gain A is called the differential gain, for obvious reasons. Perhaps not so
obvious is another name that we will attach to A: the open-loop gain. The reason for this
name will become obvious later on when we “close the loop” around the op amp and define
another gain, the closed-loop gain.

An important characteristic of op amps is that they are direct-coupled or dc amplifiers,
where dc stands for direct-coupled (it could equally well stand for direct current, since a
direct-coupled amplifier is one that amplifies signals whose frequency is as low as zero). The
fact that op amps are direct-coupled devices will allow us to use them in many important
applications. Unfortunately, though, the direct-coupling property can cause some serious
practical problems, as will be discussed in a later section.

How about bandwidth? The ideal op amp has a gain A that remains constant down to zero
frequency and up to infinite frequency. That is, ideal op amps will amplify signals of any
frequency with equal gain, and are thus said to have infinite bandwidth.

We have discussed all of the properties of the ideal op amp except for one, which in fact
is the most important. This has to do with the value of A. The ideal op amp should have a
gain A whose value is very large and ideally infinite. One may justifiably ask: If the gain A
is infinite, how are we going to use the op amp? The answer is very simple: In almost all
applications the op amp will not be used alone in a so-called open-loop configuration. Rather,
we will use other components to apply feedback to close the loop around the op amp, as will
be illustrated in detail in Section 2.2.

For future reference, Table 2.1 lists the characteristics of the ideal op amp.

Table 2.1 Characteristics of the Ideal Op Amp

. Infinite input impedance

. Zero output impedance

. Zero common-mode gain or, equivalently, infinite common-mode rejection
. Infinite open-loop gain A

. Infinite bandwidth

[ N S
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2.1.3 Differential and Common-Mode Signals

The differential input signal v, is simply the difference between the two input signals v, and

v,; that is,

Uy =1, — v, 2.1 <

The common-mode input signal v, is the average of the two input signals v, and v,; namely,

Utem = %(vl + UZ) (22) (

Equations (2.1) and (2.2) can be used to express the input signals v, and v, in terms of their
differential and common-mode components as follows:

and

V) = Uy — Vgl2 (2.3)

Uy = Uy, + 0,12 2.4)

These equations can in turn lead to the pictorial representation in Fig. 2.4.

vy

\S]

%)

Figure 2.4 Representation of the signal
sources v, and v, in terms of their differential
and common-mode components.

2.2 Consider an op amp that is ideal except that its open-loop gain A = 10°. The op amp is used in a feedback
circuit, and the voltages appearing at two of its three signal terminals are measured. In each of the
following cases, use the measured values to find the expected value of the voltage at the third terminal.
Also give the differential and common-mode input signals in each case. (a) v, =0 V and v; =2 V; (b)
v,=+5Vand v; =—10V; (c) v, = 1.002 V and v, =0.998 V; (d) v, = -3.6 Vand v; = —3.6 V.
Ans. (a) v, =-0.002V, v, =2mV, v, =—1mV; (b) v, =4+5.01 V, v, =—-10mV, v,,, = 5.005 =~
5Vi(©)vy,=—4V,v,=—4mV, v, =1V; () v,=-3.6036V, v, =-3.6mV, v,,, = —3.6V
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2.3 The internal circuit of a particular op amp can be modeled by the circuit shown in Fig. E2.3. Express
v, as a function of v, and v,. For the case G,, = 10 mA/V, R = 10 k€2, and p = 100, find the value of

the open-loop gain A.
Ans. vy =uG,R(v, —v,); A=10,000 V/V or 80 dB
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2.2 The Inverting Configuration

As mentioned above, op amps are not used alone; rather, the op amp is connected to passive
components in a feedback circuit. There are two such basic circuit configurations employing
an op amp and two resistors: the inverting configuration, which is studied in this section, and
the noninverting configuration, which we shall study in the next section.

Figure 2.5 shows the inverting configuration. It consists of one op amp and two resistors
R, and R,. Resistor R, is connected from the output terminal of the op amp, terminal 3, back
to the inverting or negative input terminal, terminal 1. We speak of R, as applying negative
feedback; if R, were connected between terminals 3 and 2 we would have called this positive
feedback. Note also that R, closes the loop around the op amp. In addition to adding R,, we have
grounded terminal 2 and connected a resistor R, between terminal 1 and an input signal source
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R

NE

N

Uy

~
Q

Figure 2.5 The inverting closed-loop con-
figuration.

with a voltage v,. The output of the overall circuit is taken at terminal 3 (i.e., between terminal
3 and ground). Terminal 3 is, of course, a convenient point from which to take the output, since
the impedance level there is ideally zero. Thus the voltage v,, will not depend on the value of the
current that might be supplied to a load impedance connected between terminal 3 and ground.

2.2.1 The Closed-Loop Gain

We now wish to analyze the circuit in Fig. 2.5 to determine the closed-loop gain G, defined as
Yo
Yr
We will do so assuming the op amp to be ideal. Figure 2.6(a) shows the equivalent circuit, and
the analysis proceeds as follows: The gain A is very large (ideally infinite). If we assume that
the circuit is “working” and producing a finite output voltage at terminal 3, then the voltage
between the op-amp input terminals should be negligibly small and ideally zero. Specifically,
if we call the output voltage v,,, then, by definition,

Yo
v,—v,=—=0

A

It follows that the voltage at the inverting input terminal (v,) is given by v, = v,. That is,
because the gain A approaches infinity, the voltage v, approaches and ideally equals v,. We
speak of this as the two input terminals “tracking each other in potential.” We also speak of a
“virtual short circuit” that exists between the two input terminals. Here the word virfual should
be emphasized, and one should not make the mistake of physically shorting terminals 1 and
2 together while analyzing a circuit. A virtual short circuit means that whatever voltage is
at 2 will automatically appear at 1 because of the infinite gain A. But terminal 2 happens to
be connected to ground; thus v, = 0 and v, = 0. We speak of terminal 1 as being a virtual
ground—that is, having zero voltage but not physically connected to ground.

Now that we have determined v, we are in a position to apply Ohm’s law and find the
current i, through R, (see Fig. 2.6) as follows:

_y—v vy —=0 vy

"R T RR
Where will this current go? It cannot go into the op amp, since the ideal op amp has an infinite
input impedance and hence draws zero current. It follows that i; will have to flow through R, to

the low-impedance terminal 3. We can then apply Ohm’s law to R, and determine v,); that is,

vo=v; — R,

Thus,
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Figure 2.6 Analysis of the inverting configuration. The circled numbers indicate the order of the analysis

steps.

which is the required closed-loop gain. Figure 2.6(b) illustrates these steps and indicates by
the circled numbers the order in which the analysis is performed.

We thus see that the closed-loop gain is simply the ratio of the two resistances R, and
R,. The minus sign means that the closed-loop amplifier provides signal inversion. Thus if
R,/R, = 10 and we apply at the input (v,) a sine-wave signal of 1 V peak-to-peak, then the
output v, will be a sine wave of 10 V peak-to-peak and phase-shifted 180° with respect to
the input sine wave. Because of the minus sign associated with the closed-loop gain, this
configuration is called the inverting configuration.
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The fact that the closed-loop gain depends entirely on external passive components
(resistors R, and R,) is very significant. It means that we can make the closed-loop gain
as accurate as we want by selecting passive components of appropriate accuracy. It also
means that the closed-loop gain is (ideally) independent of the op-amp gain. This is a
dramatic illustration of negative feedback: We started out with an amplifier having very
large gain A, and through applying negative feedback we have obtained a closed-loop gain
R,/R, that is much smaller than A but is stable and predictable. That is, we are trading gain
for accuracy.

2.2.2 Effect of Finite Open-Loop Gain

The points just made are more clearly illustrated by deriving an expression for the closed-loop
gain under the assumption that the op-amp open-loop gain A is finite. Figure 2.7 shows the
analysis. If we denote the output voltage v,,, then the voltage between the two input terminals
of the op amp will be v,/A. Since the positive input terminal is grounded, the voltage at the
negative input terminal must be —v,/A. The current i, through R, can now be found from

o U —(—vA) v+ v,/A
ll = =

R, R,
I, =1 Rz
AANN
vy
g R, 0
A =
A A4
_Yo A —o0
A 4 +
19 v
© Figure 2.7 Analysis of the inverting con-
g _ figuration taking into account the finite

open-loop gain of the op amp.
The infinite input impedance of the op amp forces the current i, to flow entirely through R,.
The output voltage v,, can thus be determined from

v, .
Vo = _X — LR,

Yo v 4+ v,/A
=0 _ (2200 )R,
A R,

Collecting terms, the closed-loop gain G is found as

—R,/R
G= Yo _ # (2.5) <
v, 1+ +RJ/R)/IA

We note that as A approaches 0o, G approaches the ideal value of —R,/R,. Also, from Fig. 2.7
we see that as A approaches oo, the voltage at the inverting input terminal approaches zero.
This is the virtual-ground assumption we used in our earlier analysis when the op amp was
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assumed to be ideal. Finally, note that Eq.(2.5) in fact indicates that to minimize the
dependence of the closed-loop gain G on the value of the open-loop gain A, we should make

1+R2 <A
R

1

Consider the inverting configuration with R, = 1 k€2 and R, = 100 k€2, that is, having an ideal closed-loop
gain of —100.

(a) Find the closed-loop gain for the cases A = 10°,10%, and 10°. In each case determine the percentage
error in the magnitude of G relative to the ideal value of R,/R, (obtained with A = 00). Also determine
the voltage v, that appears at the inverting input terminal when v, = 0.1 V.

(b) If the open-loop gain A changes from 100,000 to 50,000 (i.e., drops by 50%), what is the corresponding
percentage change in the magnitude of the closed-loop gain G?

Solution

(a) Substituting the given values in Eq. (2.5), we obtain the values given in the following table, where
the percentage error € is defined as

G| — (R,/R
€= 161~ R,/R,) x 100
(R,/R))

The values of v, are obtained from v, = —v,/A = Gv,/A with v, = —0.1 V.
A [q] € v,
10° 90.83 —9.17% —9.08 mV
10* 99.00 —1.00% —0.99 mV
10° 99.90 —0.10% —0.10 mV

(b) Using Eq. (2.5), we find that for A = 50,000, |G| = 99.80. Thus a —50% change in the open-loop gain
results in a change in |G| from 99.90 to 99.80, which is only —0.1%!

2.2.3 Input and Output Resistances

Assuming an ideal op amp with infinite open-loop gain, the input resistance of the closed-loop
inverting amplifier of Fig. 2.5 is simply equal to R,. This can be seen from Fig. 2.6(b), where

R = Uy Uy
> T ulR, !
Now recall that in Section 1.5 we learned that the amplifier input resistance forms a voltage
divider with the resistance of the source that feeds the amplifier. Thus, to avoid the loss of signal
strength, voltage amplifiers are required to have high input resistance. In the case of the invert-
ing op-amp configuration we are studying, to make R; high we should select a high value for
R,. However, if the required gain R,/R, is also high, then R, could become impractically large
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(e.g., greater than a few megohms). We may conclude that the inverting configuration suffers
from a low input resistance. A solution to this problem is discussed in Example 2.2 below.

Since the output of the inverting configuration is taken at the terminals of the ideal voltage
source A(v, — v,) (see Fig. 2.6a), it follows that the output resistance of the closed-loop
amplifier is zero.

Assuming the op amp to be ideal, derive an expression for the closed-loop gain v,/v, of the circuit shown
in Fig. 2.8. Use this circuit to design an inverting amplifier with a gain of 100 and an input resistance of
1 MQ. Assume that for practical reasons it is required not to use resistors greater than 1 M. Compare
your design with that based on the inverting configuration of Fig. 2.5.

Figure 2.8 Circuit for Example 2.2. The circled numbers indicate the sequence of the steps in the analysis.

Solution
The analysis begins at the inverting input terminal of the op amp, where the voltage is

—v, —v,
'U1= 0= 0=O
A 00

Here we have assumed that the circuit is “working” and producing a finite output voltage v,. Knowing
v,, we can determine the current i, as follows:
u—v, v,—0 vy

R 1 B Rl B Rl

L=

Since zero current flows into the inverting input terminal, all of i, will flow through R,, and thus

. . Uy
h=i,==

R,

Now we can determine the voltage at node x:

. U
W, =W = iy =0 = ITR2= ===

69
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Example 2.2 continued

This in turn enables us to find the current i,:

0—v, R,
L= = Uy
R? R1R3
Next, a node equation at x yields i,:
. e Uy + R,
I, =i, +i,=— v
4 2 3 Rl R1R3 1
Finally, we can determine v, from
Vg = T, = IRy
R v R
=—= I e e v |R,
Rl Rl R1R3

Thus the voltage gain is given by

which can be written in the form

Now, since an input resistance of 1 M is required, we select R, = 1 MQ2. Then, with the limitation of
using resistors no greater than 1 M2, the maximum value possible for the first factor in the gain expression
is 1 and is obtained by selecting R, = 1 M€2. To obtain a gain of —100, R, and R, must be selected so that
the second factor in the gain expression is 100. If we select the maximum allowed (in this example) value
of 1 MR for R,, then the required value of R, can be calculated to be 10.2 k2. Thus this circuit utilizes
three 1-M€2 resistors and a 10.2-k<2 resistor. In comparison, if the inverting configuration were used with
R, = 1 MQ2 we would have required a feedback resistor of 100 M€2, an impractically large value!

Before leaving this example it is insightful to inquire into the mechanism by which the circuit is able to
realize a large voltage gain without using large resistances in the feedback path. Toward that end, observe
that because of the virtual ground at the inverting input terminal of the op amp, R, and R, are in effect in
parallel. Thus, by making R, lower than R, by, say, a factor k (i.e., where k > 1), R, is forced to carry a
current k-times thatin R,. Thus, while i, =i, i; = ki, and i, = (k4 1)i,. It is the current multiplication by a
factor of (k + 1) that enables a large voltage drop to develop across R, and hence a large v,, without using
a large value for R,. Notice also that the current through R, is independent of the value of R,. It follows
that the circuit can be used as a current amplifier as shown in Fig. 2.9.

=1 )
2 I R, 4 R,

—

v, =0

- Figure 2.9 A current amplifier based on the circuit
of Fig. 2.8. The amplifier delivers its output current
+ to R,. It has a current gain of (1 +R,/R,), a zero input
R, resistance, and an infinite output resistance. The load
iy = ( )1 p (R,), however, must be floating (i.e., neither of its

two terminals can be connected to ground).
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D2.4 Use the circuit of Fig. 2.5 to design an inverting amplifier having a gain of —10 and an input resistance
of 100 k2. Give the values of R, and R,.
Ans. R, =100k2; R, =1 MQ

2.5 The circuit shown in Fig. E2.5(a) can be used to implement a transresistance amplifier (see Table

1.1 in Section 1.5). Find the value of the input resistance R,, the transresistance R,,, and the output
resistance R, of the transresistance amplifier. If the signal source shown in Fig. E2.5(b) is connected
to the input of the transresistance amplifier, find the amplifier output voltage.
Ans. R,=0;R,=—10k2; R, =0;v,=-5V

10 kQ
VAVAV
Input
o—— Output
——0 0.5 mA 10 kQ
(@) (b)

Figure E2.5

2.6 For the circuit in Fig. E2.6 determine the values of v,,i,,i,, v,,i,, and i,. Also determine the voltage
gain v,/v,, current gain i,/i;, and power gain P,/P,.
Ans. 0 V; 1 mA; 1 mA; —10 V; —10 mA; —11 mA; —10 V/V (20 dB), —10 A/A (20 dB);

100 W/W (20 dB)
b 10kQ
——AMW———
o 1kQ i
[}
Y ——0 U
1V g
>
— —y : 1kQ
— FigureE2.6

2.2.4 An Important Application—The Weighted Summer

A very important application of the inverting configuration is the weighted-summer circuit
shown in Fig. 2.10. Here we have a resistance R; in the negative-feedback path (as before),
but we have a number of input signals v, v,,..., v, each applied to a corresponding resistor
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R,,R,,...,R,, which are connected to the inverting terminal of the op amp. From our previous
discussion, the ideal op amp will have a virtual ground appearing at its negative input terminal.

Ohm’s law then tells us that the currents i,,i,,...,i, are given by
TR —

1 — ] 2 £ £ n
R] 2 Rn

Ry
_+_
Vo
0oV = =
- (& R R
vo = (R[[I + szz + + R”U"

Figure 2.10 A weighted summer.
All these currents sum together to produce the current i,
i=i+i,+--+i, (2.6)

which will be forced to flow through R; (since no current flows into the input terminals of
an ideal op amp). The output voltage v, may now be determined by another application of

Ohm’s law,
vo =0 —iR; = —iR;
Thus,
Ry R; Ry
> v0=—<R—lvl+ITzv2+--~+R—nvn> 2.7
That is, the output voltage is a weighted sum of the input signals v,,v,,...,v,. This

circuit is therefore called a weighted summer. Note that each summing coefficient may
be independently adjusted by adjusting the corresponding “feed-in” resistor (R, to R,). This
nice property, which greatly simplifies circuit adjustment, is a direct consequence of the virtual
ground that exists at the inverting op-amp terminal. As the reader will soon come to appreciate,
virtual grounds are extremely “handy.” In the weighted summer of Fig. 2.10 all the summing
coefficients must be of the same sign. The need occasionally arises for summing signals with
opposite signs. Such a function can be implemented, however, using two op amps as shown in
Fig. 2.11. Assuming ideal op amps, it can be easily shown that the output voltage is given by

(R (R R\ (R. R. R, 5 g
Yo =0 (RT)(R:) +"2<1€><E> ‘”3(12) ‘”4(1?4) @9

Weighted summers are utilized in a variety of applications including in the design of
audio systems, where they can be used in mixing signals originating from different musical
instruments.
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——O Up

Figure 2.11 A weighted summer capable of implementing summing coefficients of both signs.

D2.7 Design an inverting op-amp circuit to form the weighted sum v,, of two inputs v, and v,. It is required
that v, = — (v, +5v,). Choose values for R, R,, and R, so that for a maximum output voltage of 10 V
the current in the feedback resistor will not exceed 1 mA.

Ans. A possible choice: R; = 10k, R, =2k, and R, = 10 k2

D2.8 Use the idea presented in Fig. 2.11 to design a weighted summer that provides
Vo =20, + v, —4v,

Ans. A possible choice: R, = 5k, R, = 10k2, R, = 10k, R, = 10k, R, = 2.5k,
R, =10k

2.3 The Noninverting Configuration

The second closed-loop configuration we shall study is shown in Fig. 2.12. Here the input
signal v, is applied directly to the positive input terminal of the op amp while one terminal of
R, is connected to ground.

2.3.1 The Closed-Loop Gain

Analysis of the noninverting circuit to determine its closed-loop gain (v,/v,) is illustrated
in Fig. 2.13. Again the order of the steps in the analysis is indicated by circled numbers.
Assuming that the op amp is ideal with infinite gain, a virtual short circuit exists between its
two input terminals. Hence the difference input signal is

v,dz%zo forA=o00

Thus the voltage at the inverting input terminal will be equal to that at the noninverting input
terminal, which is the applied voltage v,. The current through R, can then be determined as
v,/R,. Because of the infinite input impedance of the op amp, this current will flow through
R,, as shown in Fig. 2.13. Now the output voltage can be determined from

—u+ (2R
Uy =10 —
0 I R1 2
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Figure 2.12 The noninverting configuration.

— Uy R>
= + —R, = 1 +—=
<& R, @v, Yo I R, 2 v,( R|> @

Figure 2.13 Analysis of the noninverting circuit. The sequence of the steps in the analysis is indicated by
the circled numbers.

which yields

Yo R,
> o 1+ R, (2.9)
Further insight into the operation of the noninverting configuration can be obtained by
considering the following: Since the current into the op-amp inverting input is zero, the circuit
composed of R, and R, acts in effect as a voltage divider feeding a fraction of the output voltage

back to the inverting input terminal of the op amp; that is,

R, (2.10)
vy = 0, —_— .
1 o R] +R2

Then the infinite op-amp gain and the resulting virtual short circuit between the two input
terminals of the op amp forces this voltage to be equal to that applied at the positive input

terminal; thus,
< . )
Vol —— | =v
o Rl +R2 1

which yields the gain expression given in Eq. (2.9).

This is an appropriate point to reflect further on the action of the negative feedback present
in the noninverting circuit of Fig. 2.12. Let v, increase. Such a change in v, will cause v, to
increase, and v,, will correspondingly increase as a result of the high (ideally infinite) gain of
the op amp. However, a fraction of the increase in v, will be fed back to the inverting input
terminal of the op amp through the (R,,R,) voltage divider. The result of this feedback will
be to counteract the increase in v,,, driving v,, back to zero, albeit at a higher value of v, that
corresponds to the increased value of v,. This degenerative action of negative feedback gives
it the alternative name degenerative feedback. Finally, note that the argument above applies
equally well if v, decreases. A formal and detailed study of feedback is presented in Chapter 11.
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2.3.2 Effect of Finite Open-Loop Gain

As we have done for the inverting configuration, we now consider the effect of the finite
op-amp open-loop gain A on the gain of the noninverting configuration. Assuming the op amp
to be ideal except for having a finite open-loop gain A, it can be shown that the closed-loop
gain of the noninverting amplifier circuit of Fig. 2.12 is given by
Vg 1+ (R,/R,)
G= 5 = ¥ RJR) (2.11) <<
1+ "

Observe that the denominator is identical to that for the case of the inverting configuration
(Eq. 2.5). This is no coincidence; it is a result of the fact that both the inverting and the
noninverting configurations have the same feedback loop, which can be readily seen if
the input signal source is eliminated (i.e., short-circuited). The numerators, however, are
different, for the numerator gives the ideal or nominal closed-loop gain (—R,/R, for the
inverting configuration, and 1 4 R,/R, for the noninverting configuration). Finally, we note
(with reassurance) that the gain expression in Eq. (2.11) reduces to the ideal value for A = oo.
In fact, it approximates the ideal value for

A 14
R,
This is the same condition as in the inverting configuration, except that here the quantity
on the right-hand side is the nominal closed-loop gain. The expressions for the actual and
ideal values of the closed-loop gain G in Egs. (2.11) and (2.9), respectively, can be used to
determine the percentage error in G resulting from the finite op-amp gain A as
14+ (R,/R
Percent gain error = _ IR®RR (2.12)
A+1+(Ry/R)
Thus, as an example, if an op amp with an open-loop gain of 1000 is used to design a
noninverting amplifier with a nominal closed-loop gain of 10, we would expect the closed-loop
gain to be about 1% below the nominal value.

2.3.3 Input and Output Resistance

The gain of the noninverting configuration is positive—hence the name noninverting. The
input impedance of this closed-loop amplifier is ideally infinite, since no current flows into
the positive input terminal of the op amp. The output of the noninverting amplifier is taken
at the terminals of the ideal voltage source A(v, — v,) (see the op-amp equivalent circuit in
Fig. 2.3), and thus the output resistance of the noninverting configuration is zero.

2.3.4 The Voltage Follower

The property of high input impedance is a very desirable feature of the noninverting
configuration. It enables using this circuit as a buffer amplifier to connect a source with
a high impedance to a low-impedance load. We discussed the need for buffer amplifiers in
Section 1.5. In many applications the buffer amplifier is not required to provide any voltage
gain; rather, it is used mainly as an impedance transformer or a power amplifier. In such cases
we may make R, =0 and R, = oo to obtain the unity-gain amplifier shown in Fig. 2.14(a).
This circuit is commonly referred to as a voltage follower, since the output “follows” the
input. In the ideal case, v, = v,,R;, = o0, R, = 0, and the follower has the equivalent circuit
shown in Fig. 2.14(b).
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O——=O
—O +
o + Uy IXUI

Vo = Y
Uy o A

(@) (b)

Figure 2.14 (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model.

Since in the voltage-follower circuit the entire output is fed back to the inverting input,
the circuit is said to have 100% negative feedback. The infinite gain of the op amp then acts

to make v,; = 0 and hence v, = v,. Observe that the circuit is elegant in its simplicity!

Since the noninverting configuration has a gain greater than or equal to unity, depending

on the choice of R,/R,, some prefer to call it “a follower with gain.”

2.9 Use the superposition principle to find the output voltage of the circuit shown in Fig. E2.9.

2.10

Ans. v, =6v, +4v,

9 kQ)
oA 'AZ
1 kQ
AN —
= ——O
2 kQ) +
v, O— MW + Vo
3 kQ —
v, O—AM—] =

Figure E2.9

If in the circuit of Fig. E2.9 the 1-k€2 resistor is disconnected from ground and connected to a third
signal source v, use superposition to determine v,, in terms of v,, v,, and v;.
Ans. v, =6v, +4v, —9v,

D2.11 Design a noninverting amplifier with a gain of 2. At the maximum output voltage of 10 V the current

2.12

in the voltage divider is to be 10 pA.
Ans. R, =R, =0.5MQ

(a) Show that if the op amp in the circuit of Fig. 2.12 has a finite open-loop gain A, then the
closed-loop gain is given by Eq. (2.11). (b) For R, = 1 k2 and R, = 9 k2 find the percentage
deviation € of the closed-loop gain from the ideal value of (1 + R,/R,) for the cases A = 103, 104,
and 10°. For v; =1V, find in each case the voltage between the two input terminals of the op amp.
Ans. e =—1%, —0.1%, —0.01%; v, — v, =9.9mV, 1 mV, 0.l mV
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2.13 For the circuit in Fig. E2.13 find the values of i,, v, i}, i,, v,, i;, and i,. Also find the voltage gain
v,/v,, the current gain i, /i, and the power gain P,/P,.
Ans. 0; 1 V; 1mA; 1mA; 10 V; 10 mA; 11 mA; 10 V/V (20 dB); oo; 0o

<2 9kQ

—O Uy

>
1kQ

— Figure E2.13

2.14 Tt is required to connect a transducer having an open-circuit voltage of 1 V and a source resistance
of 1 M2 to a load of 1-k<2 resistance. Find the load voltage if the connection is done (a) directly,
and (b) through a unity-gain voltage follower.

Ans. () ImV;(b) 1V
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Having studied the two basic configurations of op-amp circuits together with some of their
direct applications, we are now ready to consider a somewhat more involved but very important
application. Specifically, we shall study the use of op amps to design difference or differential
amplifiers.” A difference amplifier is one that responds to the difference between the two
signals applied at its input and ideally rejects signals that are common to the two inputs. The
representation of signals in terms of their differential and common-mode components was
given in Fig. 2.4. It is repeated here in Fig. 2.15 with slightly different symbols to serve as
the input signals for the difference amplifiers we are about to design. Although ideally the
difference amplifier will amplify only the differential input signal v,, and reject completely
the common-mode input signal v,,,,, practical circuits will have an output voltage v, given by

Vo = Ad U + Acm Ylem (2 13)

where A, denotes the amplifier differential gain and A_, denotes its common-mode gain
(ideally zero). The efficacy of a differential amplifier is measured by the degree of its rejection
of common-mode signals in preference to differential signals. This is usually quantified by a
measure known as the common-mode rejection ratio (CMRR), defined as

A
CMRR =20 log 1Ad| 214 =

Al

*The terms difference and differential are usually used to describe somewhat different amplifier types.
For our purposes at this point, the distinction is not sufficiently significant. We will be more precise
near the end of this section.
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O Uy = Upyy — Ypa/2

/2

Ya = Un = Un

1
Yrem = ;(?’ll + vp)

Figure 2.15 Representing the input signals to a
differential amplifier in terms of their differential
S
= and common-mode components.

The need for difference amplifiers arises frequently in the design of electronic systems,
especially those employed in instrumentation. As a common example, consider a transducer
providing a small (e.g., 1 mV) signal between its two output terminals while each of the two
wires leading from the transducer terminals to the measuring instrument may have a large
interference signal (e.g., 1 V) relative to the circuit ground. The instrument front end obviously
needs a difference amplifier.

Before we proceed any further we should address a question that the reader might have:
The op amp is itself a difference amplifier; why not just use an op amp? The answer is that the
very high (ideally infinite) gain of the op amp makes it impossible to use by itself. Rather, as
we did before, we have to devise an appropriate feedback network to connect to the op amp
to create a circuit whose closed-loop gain is finite, predictable, and stable.

2.4.1 A Single-Op-Amp Difference Amplifier

Our first attempt at designing a difference amplifier is motivated by the observation that the
gain of the noninverting amplifier configuration is positive, (1 4+ R,/R,), while that of the
inverting configuration is negative, (—R,/R,). Combining the two configurations together is
then a step in the right direction—namely, getting the difference between two input signals.
Of course, we have to make the two gain magnitudes equal in order to reject common-mode
signals. This, however, can be easily achieved by attenuating the positive input signal to reduce
the gain of the positive path from (1 4 R,/R,) to (R,/R,). The resulting circuit would then look
like that shown in Fig. 2.16, where the attenuation in the positive input path is achieved by
the voltage divider (R;,R,). The proper ratio of this voltage divider can be determined from

R, R\ R,
1+2)==2
R4 +R3 RI Rl

R, R
R,+R, R,+R,

which can be put in the form

This condition is satisfied by selecting

R, R,
R, R

(2.15)

1
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R,
——MW————
R,
Uit o— MW —
R; °
Up aF +

R4 Yo
= Figure 2.16 A difference amplifier.
This completes our work. However, we have perhaps proceeded a little too fast! Let’s step
back and verify that the circuit in Fig. 2.16 with R, and R, selected according to Eq. (2.15)
does in fact function as a difference amplifier. Specifically, we wish to determine the output
voltage v,, in terms of v;, and v,,. Toward that end, we observe that the circuit is linear, and
thus we can use superposition.

To apply superposition, we first reduce v,, to zero—that is, ground the terminal to which
v, 1s applied—and then find the corresponding output voltage, which will be due entirely to
v;,. We denote this output voltage v,, . Its value may be found from the circuit in Fig. 2.17(a),
which we recognize as that of the inverting configuration. The existence of R, and R, does
not affect the gain expression, since no current flows through either of them. Thus,

R,
Vg =——=10
01 Rl 11

Next, we reduce v;, to zero and evaluate the corresponding output voltage v,,. The circuit will
now take the form shown in Fig. 2.17(b), which we recognize as the noninverting configuration

with an additional voltage divider, made up of R, and R,, connected to the input v,,. The output
voltage v,), is therefore given by

R, (| R\_R
Vo = Uy ———— + —=)=—v
o 12R3+R4 R, R, 2

where we have utilized Eq. (2.15).
The superposition principle tells us that the output voltage v,, is equal to the sum of v,
and v,,. Thus we have

R R
Vo = ITZ(UH —vy) = 1727}111 (2.16)
1 1

Thus, as expected, the circuit acts as a difference amplifier with a differential gain A, of
A== (2.17)
Of course this is predicated on the op amp being ideal and furthermore on the selection of

R, and R, so that their ratio matches that of R, and R, (Eq. 2.15). To make this matching
requirement a little easier to satisfy, we usually select

R;=R, and R,=R,
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R2 R2
MV —— MWW/
R| Rl
U 0—AWV — _L-'VW -
L—O Vo1 = R, —0 V0o
Un ar
R,
(a) (b)

Figure 2.17 Application of superposition to the analysis of the circuit of Fig. 2.16.

Let’s next consider the circuit with only a common-mode signal applied at the input, as shown
in Fig. 2.18. The figure also shows some of the analysis steps. Thus,

o1 R,
ll =5 | Y%em = 55 Yiem
R, R,+R,

R, 1
= vl(:m T (2 1 8)
R,+R, R,
The output voltage can now be found from
R, R
Vop= ——Up, — I
[ R4 +R3 Ic 2532
Substituting i, = i, and for i, from Eq. (2.18),
_ R, , Ry
o — Uiem =~ 5 Ylem
R,+R, R, R,+R,
R, ( R, R3>
— — — |7
R,+R, R/ R, )"
Thus,
R R, R
A,=—0 = - 1-22 (2.19)
Uiem R, +R; R R,

For the design with the resistor ratios selected according to Eq. (2.15), we obtain

ACl}l = O
as expected. Note, however, that any mismatch in the resistance ratios can make A_,, nonzero,
and hence CMRR finite.
In addition to rejecting common-mode signals, a difference amplifier is usually required
to have a high input resistance. To find the input resistance between the two input terminals
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——O U

Ulem

Figure 2.18 Analysis of the difference amplifier to determine its common-mode gain A =v,/v, .

(i.e., theresistance seen by v,,), called the differential input resistance R, consider Fig. 2.19.
Here we have assumed that the resistors are selected so that

R,=R, and R,=R,
Now
P

id =
L

Since the two input terminals of the op amp track each other in potential, we may write a loop
equation and obtain

vy =Ri; +0+R,j,
Thus,

R, =2R, (2200 =

Note that if the amplifier is required to have a large differential gain (R,/R,), then R, of
necessity will be relatively small and the input resistance will be correspondingly low, a
drawback of this circuit. Another drawback of the circuit is that it is not easy to vary the
differential gain of the amplifier. Both of these drawbacks are overcome in the instrumentation
amplifier discussed next.

R,
——MA———
e’l Rl
v 2
Urd — R O
1
—o— AW +
i <; \ . o . .
R, I R, :, Virtual short circuit Figure 2.19 .Fmdlng the .1r.1put resis-
€1 tance of the difference amplifier for the

g case R, =R and R, =R,.
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2.15 Consider the difference-amplifier circuit of Fig. 2.16 forthe case R, =R, =2 kQ and R, =R, =200 k2.

(a) Find the value of the differential gain A,. (b) Find the value of the differential input resistance
R,, and the output resistance R,. (c) If the resistors have 1% tolerance (i.e., each can be within 1%
of its nominal value), use Eq. (2.19) to find the worst-case common-mode gain A, and hence the
corresponding value of CMRR.
Ans. (a) 100 V/V (40 dB); (b) 4 k2, 0 €2; (c) 0.04 V/V, 68 dB

D2.16 Find values for the resistances in the circuit of Fig. 2.16 so that the circuit behaves as a difference
amplifier with an input resistance of 20 k<2 and a gain of 10.
Ans. R, =R, =10kQ; R, =R, =100k

2.4.2 A Superior Circuit—The Instrumentation Amplifier

The low-input-resistance problem of the difference amplifier of Fig. 2.16 can be solved by
using voltage followers to buffer the two input terminals; that is, a voltage follower of the type
in Fig. 2.14 is connected between each input terminal and the corresponding input terminal of
the difference amplifier. However, if we are going to use two additional op amps, we should
ask the question: Can we get more from them than just impedance buffering? An obvious
answer would be that we should try to get some voltage gain. It is especially interesting that

Un

Un

Figure 2.20 A popular circuit for an instrumentation amplifier. (a) Initial approach to the circuit. (b) The
circuit in (a) with the connection between node X and ground removed and the two resistors R, and R,
lumped together. This simple wiring change dramatically improves performance. (¢) Analysis of the circuit
in (b) assuming ideal op amps.
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Un
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Figure 2.20 continued

(©)

we can achieve this without compromising the high input resistance simply by using followers
with gain rather than unity-gain followers. Achieving some or indeed the bulk of the required
gain in this new first stage of the differential amplifier eases the burden on the difference
amplifier in the second stage, leaving it to its main task of implementing the differencing
function and thus rejecting common-mode signals.

The resulting circuit is shown in Fig. 2.20(a). It consists of two stages in cascade. The first
stage is formed by op amps A, and A, and their associated resistors, and the second stage is the
by-now-familiar difference amplifier formed by op amp A, and its four associated resistors.
Observe that as we set out to do, each of A; and A, is connected in the noninverting configu-
ration and thus realizes a gain of (1 4+R,/R,). It follows that each of v, and v,, is amplified by
this factor, and the resulting amplified signals appear at the outputs of A, and A,, respectively.

The difference amplifier in the second stage operates on the difference signal
(14+R,/R))(v;, —v;) = (1 +R,/R))v,, and provides at its output

v =& 1+& v
o R, R, 1d

<1+

Ry,
1€| 1d
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Thus the differential gain realized is

R, R,
A, = (17) (1 + 17) 221

The common-mode gain will be zero because of the differencing action of the second-stage
amplifier.

The circuit in Fig. 2.20(a) has the advantage of very high (ideally infinite) input resistance
and high differential gain. Also, provided A, and A, and their corresponding resistors are
matched, the two signal paths are symmetric—a definite advantage in the design of a
differential amplifier. The circuit, however, has three major disadvantages:

1. The input common-mode signal v,,, is amplified in the first stage by a gain equal to
that experienced by the differential signal v,,. This is a very serious issue, for it could
result in the signals at the outputs of A, and A, being of such large magnitudes that
the op amps saturate (more on op-amp saturation in Section 2.8). But even if the op
amps do not saturate, the difference amplifier of the second stage will now have to
deal with much larger common-mode signals, with the result that the CMRR of the
overall amplifier will inevitably be reduced.

2. The two amplifier channels in the first stage have to be perfectly matched, otherwise
a spurious signal may appear between their two outputs. Such a signal would get
amplified by the difference amplifier in the second stage.

3. To vary the differential gain A,, two resistors have to be varied simultaneously, say
the two resistors labeled R,. At each gain setting the two resistors have to be perfectly
matched: a difficult task.

All three problems can be solved with a very simple wiring change: Simply disconnect the
node between the two resistors labeled R,, node X, from ground. The circuit with this small
but functionally profound change is redrawn in Fig. 2.20(b), where we have lumped the two
resistors (R, and R,) together into a single resistor (2R,).

Analysis of the circuit in Fig. 2.20(b), assuming ideal op amps, is straightforward, as is
illustrated in Fig. 2.20(c). The key point is that the virtual short circuits at the inputs of op
amps A, and A, cause the input voltages v,, and v,, to appear at the two terminals of resistor
(2R)). Thus the differential input voltage v,, — v, = v,, appears across 2R, and causes a
current i = v,,/2R, to flow through 2R, and the two resistors labeled R,. This current in turn
produces a voltage difference between the output terminals of A, and A, given by

2R,
Yoo — Vo1 = 1+§ 7]
I

The difference amplifier formed by op amp A, and its associated resistors senses the voltage
difference (v,, — v,,) and provides a proportional output voltage v,:

R
Vo = 174(”02 — Vo)
3

R, R,
=142
R k)
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Thus the overall differential voltage-gain is given by

Yo _ ’E(l + ’ﬁ) 222) =<

A
! vy R, R,

Observe that proper differential operation does not depend on the matching of the two resistors
labeled R,. Indeed, if one of the two is of different value, say R, the expression for A, becomes

R, R,+R,
A, =—(1 2.23
e (5) @2

Consider next what happens when the two input terminals are connected together to a
common-mode input voltage v,,,. [t is easy to see that an equal voltage appears at the negative
input terminals of A, and A,, causing the current through 2R, to be zero. Thus there will be
no current flowing in the R, resistors, and the voltages at the output terminals of A, and A,
will be equal to the input (i.e., v,,,). Thus the first stage no longer amplifies v,,,; it simply
propagates v,,, to its two output terminals, where they are subtracted to produce a zero
common-mode output by A;. The difference amplifier in the second stage, however, now has
amuch improved situation at its input: The difference signal has been amplified by (1 +R,/R))
while the common-mode voltage remained unchanged.

Finally, we observe from the expression in Eq. (2.22) that the gain can be varied by
changing only one resistor, 2R,. We conclude that this is an excellent differential amplifier
circuit and is widely employed as an instrumentation amplifier, that is, as the input amplifier
used in a variety of electronic instruments.

INTEGRATED The conventional combination of three op amps and a number of precision
INSTRUMENTATION resistors to form an instrumentation amplifier is an extremely powerful tool for
AMPLIFIERS: the design of instruments for many applications. While the earliest applications

used separate op amps and discrete resistors, fully integrated versions
incorporating most required components in a single integrated-circuit package
are increasingly available from many manufacturers. Low-power versions of
these units are extremely important in the design of portable, wearable, and
implantable medical monitoring devices, such as wristband activity monitors.

Design the instrumentation amplifier circuit in Fig. 2.20(b) to provide a gain that can be varied over the
range of 2 to 1000 utilizing a 100-kS2 variable resistance (a potentiometer, or “pot” for short).

Solution

Itis usually preferable to obtain all the required gain in the first stage, leaving the second stage to perform the
task of taking the difference between the outputs of the first stage and thereby rejecting the common-mode
signal. In other words, the second stage is usually designed for a gain of 1. Adopting this approach, we select
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Example 2.3 continued

all the second-stage resistors to be equal to a practically convenient value, say 10 k2. The problem then
reduces to designing the first stage to realize a gain adjustable over the range of 2 to 1000. Implementing
2R, as the series combination of a fixed resistor R, and the variable resistor R, , obtained using the 100-k€2
pot (Fig. 2.21), we can write

2R,
1+ ——=2to 1000
le i
Thus,
14+ =2 =1000
Iy
and
2R,

I+ —=2

+ R+ 100k

These two equations yield R,, = 100.2 © and R, = 50.050 k<2. Other practical values may be selected; for
instance, R, = 100 © and R, = 49.9 kQ2 (both values are available as standard 1%-tolerance metal-film
resistors; see Appendix J) results in a gain covering approximately the required range.

Ry,

100 kQ } R, Figure 2.21 To make the gain of the circuit in Fig. 2.20(b) variable,
pot ! 2R, is implemented as the series combination of a fixed resistor R, and
a variable resistor R, . Resistor R,, ensures that the maximum available

gain is limited.

2.17 Consider the instrumentation amplifier of Fig. 2.20(b) with a common-mode input voltage of +5V
(dc) and a differential input signal of 10-mV-peak sine wave. Let (2R|) = 1 k2, R, = 0.5 M, and
R, =R, =10 k<. Find the voltage at every node in the circuit.
Ans. v, =5-0.005sinwt; v;, =540.005 sinwt; v_(op amp A,) =5—0.005sinwt; v_(op amp A,) =5+
0.005 sin wt; v, =5—5.005sinwt; vy, =545.005sinwt; v_(A;) = v, (A;) =2.5+2.5025sinwt; v, =
10.01 sin wt (all in volts)
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2.5 Integrators and Differentiators

The op-amp circuit applications we have studied thus far utilized resistors in the op-amp
feedback path and in connecting the signal source to the circuit, that is, in the feed-in path.
As a result, circuit operation has been (ideally) independent of frequency. By allowing the
use of capacitors together with resistors in the feedback and feed-in paths of op-amp circuits,
we open the door to a very wide range of useful and exciting applications of the op amp. We
begin our study of op-amp—RC circuits by considering two basic applications, namely, signal
integrators and differentiators.’

2.5.1 The Inverting Configuration with
General Impedances

To begin with, consider the inverting closed-loop configuration with impedances Z, (s) and
Z,(s) replacing resistors R, and R,, respectively. The resulting circuit is shown in Fig. 2.22
and, for an ideal op amp, has the closed-loop gain or, more appropriately, the closed-loop
transfer function

Vo __ %) (2.24)
Vi(s) Z,(s)

As explained in Section 1.6, replacing s by jo provides the transfer function for physical
frequencies w, that is, the transmission magnitude and phase for a sinusoidal input signal of
frequency w.

Z,

.

il N+[
ESINY

I

|

Figure 2.22 The inverting configura-
tion with general impedances in the
feedback and the feed-in paths.

* At this point, a review of Section 1.6 would be helpful. Also, an important fact to remember: Passing
a constant current / through a capacitor C for a time ¢ causes a change of It to accumulate on the
capacitor. Thus the capacitor voltage changes by AV = AQ/C = It/C; that is, the capacitor voltage
increases linearly with time.
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EARLY OP AMPS
AND ANALOG
COMPUTATION:

Example 2.4

In 1941, Karl D. Swartzel Jr. of Bell Labs patented “the summing amplifier,”

a high-gain dc inverting amplifier, intended to be used with negative feedback. This
precursor of the op amp used three vacuum tubes (the predecessor of the transistor)
and +350-V power supplies to achieve a gain of 90 dB. Though lacking a
differential input, it provided the usual applications of summation, integration, and
general filtering using convenient passive resistive and capacitive components.

Soon after (1942), Loebe Julie, working with Professor John R. Regazzini at
Columbia University, created a differential version, still using vacuum tubes. During
World War II, these units were used extensively to provide analog computational
functions in association with radar-directed antiaircraft firing control involving
aircraft speed projection.

In the early 1950s, driven by the demonstrated wartime success of op-amp-based
computation, general-purpose commercial systems called “analog computers” began
to appear. They consisted of a few dozen op amps and associated passive
components, including potentiometers; the interconnections required for
programming were achieved with plug boards. These computers were used to solve
differential equations.

For the circuit in Fig. 2.23, derive an expression for the transfer function V, (s)/V,(s). Show that the transfer
function is that of a low-pass STC circuit. By expressing the transfer function in the standard form shown
in Table 1.2 on page 36, find the dc gain and the 3-dB frequency. Design the circuit to obtain a dc gain of
40 dB, a 3-dB frequency of 1 kHz, and an input resistance of 1 k2. At what frequency does the magnitude
of transmission become unity? What is the phase angle at this frequency?

Solution

—

—AAMWN—
R,
o—MW—
+ L—o
= Vo
= =4 Figure 2.23 Circuit for Example 2.4.

To obtain the transfer function of the circuit in Fig.2.23, we substitute in Eq. (2.24), Z, =R, and
Z,=R, || (1/sC,). Since Z, is the parallel connection of two components, it is more convenient to work in
terms of Y,; that is, we use the following alternative form of the transfer function:

Ve 1
Vi) Z(5)Y,(s)
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and substitute Z, = R, and Y, (s) = (1/R,) 4 sC, to obtain

V,(s) 1
V() R
o Ié +5C,R,
This transfer function is of first order, has a finite dc gain (at s =0,V,/V, = —R,/R,), and has zero gain at

infinite frequency. Thus it is the transfer function of a low-pass STC network and can be expressed in the
standard form of Table 1.2 as follows:

V,(s)  —RyR,

Vi(s) 1+sCR,

from which we find the dc gain K to be

K=—2
Rl
and the 3-dB frequency w, as
1
W, =
CZRZ

We could have found all this from the circuit in Fig. 2.23 by inspection. Specifically, note that the capacitor
behaves as an open circuit at dc; thus at dc the gain is simply (—R,/R,). Furthermore, because there is a
virtual ground at the inverting input terminal, the resistance seen by the capacitor is R,, and thus the time
constant of the STC network is C,R,.

Now to obtain a dc gain of 40 dB, that is, 100 V/V, we select R,/R, = 100. For an input resistance of
1 k2, we select R, = 1 k2, and thus R, = 100 k2. Finally, for a 3-dB frequency f, = 1 kHz, we select C,
from

1

277)(1)(103:7
C, x 100 x 10°

which yields C, = 1.59 nF.

The circuit has gain and phase Bode plots of the standard form in Fig. 1.23. As the gain falls off at the
rate of —20 dB/decade, it will reach 0 dB in two decades, that is, at f = 100f; = 100 kHz. As Fig. 1.23(b)
indicates, at such a frequency, which is much greater than f;, the phase is approximately —90°. To this,
however, we must add the 180° arising from the inverting nature of the amplifier (i.e., the negative sign
in the transfer function expression). Thus at 100 kHz, the total phase shift will be —270° or, equivalently,
—+90°.
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2.5.2 The Inverting Integrator

By placing a capacitor in the feedback path (i.e., in place of Z, in Fig. 2.22) and a resistor
at the input (in place of Z,), we obtain the circuit of Fig. 2.24(a). We shall now show that
this circuit realizes the mathematical operation of integration. Let the input be a time-varying
function v, (¢). The virtual ground at the inverting op-amp input causes v, (¢) to appear in effect
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across R, and thus the current i, (#) will be v,(#)/R. This current flows through the capacitor
C, causing charge to accumulate on C. If we assume that the circuit begins operation at time
t = 0, then at an arbitrary time ¢ the current i, (¢) will have deposited on C a charge equal to
j; i, (t)dt. Thus the capacitor voltage v (¢) will change by % fot i, (t)dt. If the initial voltage on
C (at t =0) is denoted V., then

1 t
vc(t)zVC—i——/ i, (t)dt
CJo

Now the output voltage v, () = —v.(t); thus,

1 t
> v, (1) = ~r /0 v,(Hdt — V. (2.25)

Thus the circuit provides an output voltage that is proportional to the time integral of the
input, with V. being the initial condition of integration and CR the integrator time constant.
Note that, as expected, there is a negative sign attached to the output voltage, and thus this
integrator circuit is said to be an inverting integrator. It is also known as a Miller integrator
after an early worker in this field.

The operation of the integrator circuit can be described alternatively in the frequency
domain by substituting Z, (s) = R and Z, (s) = 1/sC in Eq. (2.24) to obtain the transfer function

e 1

- 2.26
> V.(s) sCR ( )
For physical frequencies, s = jow and
V,(j 1
> ) 2.27)
Vi(jw) JoCR
Thus the integrator transfer function has magnitude
% 1
2 =— 2.28
> - .28)
and phase
> ¢ =+90° (2.29)
The Bode plot for the integrator magnitude response can be obtained by noting from Eq. (2.28)
that as w doubles (increases by an octave) the magnitude is halved (decreased by 6 dB). Thus
the Bode plot is a straight line of slope —6 dB/octave (or, equivalently, —20 dB/ decade). This
line (shown in Fig. 2.24b) intercepts the 0-dB line at the frequency that makes |V, /V;| =1,
which from Eq. (2.28) is
> - ! (2.30)
a)int - CR .

The frequency w,, is known as the integrator frequency and is simply the inverse of the
integrator time constant.

Comparison of the frequency response of the integrator to that of an STC low-pass network
indicates that the integrator behaves as a low-pass filter with a corner frequency of zero.
Observe also that at w = 0, the magnitude of the integrator transfer function is infinite. This
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Figure 2.24 (a) The Miller or inverting integrator. (b) Frequency response of the integrator.

indicates that at dc the op amp is operating with an open loop. This should also be obvious
from the integrator circuit itself. Reference to Fig. 2.24(a) shows that the feedback element is
a capacitor, and thus at dc, where the capacitor behaves as an open circuit, there is no negative
feedback! This is a very significant observation and one that indicates a source of problems
with the integrator circuit: Any tiny dc component in the input signal will theoretically produce
an infinite output. Of course, no infinite output voltage results in practice; rather, the output
of the amplifier saturates at a voltage close to the op-amp positive or negative power supply
(L, or L_), depending on the polarity of the input dc signal.

The dc problem of the integrator circuit can be alleviated by connecting a resistor R,
across the integrator capacitor C, as shown in Fig. 2.25, and thus the gain at dc will be —-R./R
rather than infinite. Such a resistor provides a dc feedback path. Unfortunately, however, the
integration is no longer ideal, and the lower the value of R,., the less ideal the integrator circuit
becomes. This is because R, causes the frequency of the integrator pole to move from its
ideal location at w = 0 to one determined by the corner frequency of the STC network (R, C).
Specifically, the integrator transfer function becomes

V,(s)  R.R
Vis)  14+sCR,
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Ry
——MA——
C
R
O—MN\—
+ —0
vy (1) y
o (1) Figure 2.25 The Miller integrator with a large resistance
_ — R, connected in parallel with C in order to provide negative
- - - feedback and hence finite gain at dc.

as opposed to the ideal function of —1/sCR. The lower the value we select for R, the higher
the corner frequency (1/CR;) will be and the more nonideal the integrator becomes. Thus
selecting a value for R, presents the designer with a trade-off between dc performance and
signal performance. The effect of R, on integrator performance is investigated further in
Example 2.5.

Find the output produced by a Miller integrator in response to an input pulse of 1-V height and 1-ms width
[Fig. 2.26(a)]. Let R = 10kS2 and C = 10 nF. If the integrator capacitor is shunted by a 1-MS2 resistor,
how will the response be modified? The op amp is specified to saturate at £13 V.

Solution

In response to a 1-V, 1-ms input pulse, the integrator output will be

1 t
)= —— 1dt, 0<t<Ilms
Uo( ) CR a SIS
where we have assumed that the initial voltage on the integrator capacitoris 0. For C = 10 nFand R = 10 k<2,
CR =0.1 ms, and

v,()=—10, 0<t<lms

which is the linear ramp shown in Fig. 2.26(b). It reaches a magnitude of —10 V at # = 1 ms and remains
constant thereafter.

That the output is a linear ramp should also be obvious from the fact that the 1-V input pulse produces a
constant current through the capacitor of 1 V/10 k€2 = 0.1 mA. This constant current / = 0.1 mA supplies
the capacitor with a charge It, and thus the capacitor voltage changes linearly as (I#/C), resulting in
v, = —(/C)t. It is worth remembering that charging a capacitor with a constant current produces a linear
voltage across it.
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Figure 2.26 Waveforms for Example 2.5: (a) Input pulse. (b) Output linear ramp of ideal integrator with time constant
of 0.1 ms. (¢) Output exponential ramp with resistor R, connected across integrator capacitor.

Next consider the situation with resistor R, = 1 M2 connected across C. As before, the 1-V pulse
will provide a constant current / = 0.1 mA. Now, however, this current is supplied to an STC network
composed of R, in parallel with C. Thus, the output will be an exponential heading toward —100 V with
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Example 2.5 continued

a time constant of CR, = 10 x 107° x1x10°=10 ms,
v,(H) =—100(1—¢ "), 0<t<Ims

Of course, the exponential will be interrupted at the end of the pulse, that is, at # = 1 ms, and the output
will reach the value

v,(1ms) = —100(1 —e ") =—-9.5V

The output waveform is shown in Fig. 2.26(c), from which we see that including R, causes the ramp to
be slightly rounded such that the output reaches only —9.5 V, 0.5 V short of the ideal value of —10 V.
Furthermore, for 7 > 1 ms, the capacitor discharges through R, with the relatively long time constant of
10 ms. Finally, we note that op-amp saturation, specified to occur at £13 V, has no effect on the operation
of this circuit.

The preceding example hints at an important application of integrators, namely, their
use in providing triangular waveforms in response to square-wave inputs. This application is
explored in Exercise 2.18. Integrators have many other applications, including their use in the
design of filters (Chapter 17).

2.5.3 The Op-Amp Differentiator

Interchanging the location of the capacitor and the resistor of the integrator circuit results in
the circuit in Fig. 2.27(a), which performs the mathematical function of differentiation. To
see how this comes about, let the input be the time-varying function v,(¢), and note that the
virtual ground at the inverting input terminal of the op amp causes v, () to appear in effect
across the capacitor C. Thus the current through C will be C(dv,/dt), and this current flows
through the feedback resistor R providing at the op-amp output a voltage v, (?),

dv, (1)
dt

The frequency-domain transfer function of the differentiator circuit can be found by
substituting in Eq. (2.24), Z,(s) = 1/sC and Z,(s) = R to obtain

> v,(f) = —CR 2.31)

> “//((j)) — _sCR (2.32)

which for physical frequencies s = jow yields

> M = —jwCR (2.33)
Vi(jw)

Thus the transfer function has magnitude

— wCR (2.34)
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and phase
¢ =—90° (2.35) <

The Bode plot of the magnitude response can be found from Eq. (2.34) by noting that for an
octave increase in w, the magnitude doubles (increases by 6 dB). Thus the plot is simply a
straight line of slope +6 dB/octave (or, equivalently, +20 dB/decade) intersecting the 0-dB
line (where |V,/V,| = 1) at @ = 1/CR, where CR is the differentiator time constant [see
Fig. 2.27(b)].

The frequency response of the differentiator can be thought of as the response of an STC
high-pass filter with a corner frequency at infinity (refer to Fig. 1.24). Finally, we should note
that the very nature of a differentiator circuit causes it to be a “noise magnifier.” This is due
to the spike introduced at the output every time there is a sharp change in v, (#); such a change
could be interference coupled electromagnetically (“picked up”) from adjacent signal sources.
For this reason and because they suffer from stability problems (Chapter 11), differentiator
circuits are generally avoided in practice. When the circuit of Fig. 2.27(a) is used, it is usually
necessary to connect a small-valued resistor in series with the capacitor. This modification,
unfortunately, turns the circuit into a nonideal differentiator.

i R
:’VW—
. C )
i 0 i) = C(v,(l)
+ l o ()= —cr
'U[([) ) + v dt
a U(,_(r) Yo — R
— —_ v,
= 0V - -
(@)
\%
—2| (dB
v, (dB)
A
/7
Ve
\ +6 dB/octave
0 7 > o (log scale)
s L
7 CR

(b)

Figure 2.27 (a) A differentiator. (b) Frequency response of a differentiator with a time constant CR.
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2.18 Consider a symmetrical square wave of 20-V peak-to-peak, 0 average, and 2-ms period applied to
a Miller integrator. Find the value of the time constant CR such that the triangular waveform at the
output has a 20-V peak-to-peak amplitude.

Ans. 0.5 ms

D2.19 Use an ideal op amp to design an inverting integrator with an input resistance of 10 k<2 and an
integration time constant of 10" s. What is the gain magnitude and phase angle of this circuit at 10
rad/s and at 1 rad/s? What is the frequency at which the gain magnitude is unity?

Ans. R =10k, C =0.1 uF; at w = 10 rad/s: |V,/V;| = 100 V/V and ¢ = +90°; at w = 1 rad/s:
|V,/V,| = 1000 V/V and ¢ = +90°; 1000 rad/s

D2.20 Design a differentiator to have a time constant of 10~ s and an input capacitance of 0.01 pwF. What
is the gain magnitude and phase of this circuit at 10 rad/s, and at 10’ rad/s? In order to limit the
high-frequency gain of the differentiator circuit to 100, a resistor is added in series with the capacitor.
Find the required resistor value.

Ans. C=0.01 uF; R=1M®Q; at w = 10rad/s: |V,/V,| =0.1 V/V and ¢ = —90°; at @ = 1000 rad/s:
|V,/V.] =10 V/V and ¢ = —90°; 10 kQ

2.6 DC Imperfections

Thus far we have considered the op amp to be ideal. The only exception has been a brief
discussion of the effect of the op-amp finite gain A on the closed-loop gain of the inverting
and noninverting configurations. Although in many applications the assumption of an ideal op
amp is not a bad one, a circuit designer has to be thoroughly familiar with the characteristics
of practical op amps and the effects of such characteristics on the performance of op-amp
circuits. Only then will the designer be able to use the op amp intelligently, especially if the
application at hand is not a straightforward one. The nonideal properties of op amps will, of
course, limit the range of operation of the circuits analyzed in the previous examples.

In this and the two sections that follow, we consider some of the important nonideal
properties of the op amp.4 We do this by treating one nonideality at a time, beginning in this
section with the dc problems to which op amps are susceptible.

2.6.1 Offset Voltage

Because op amps are direct-coupled devices with large gains at dc, they are prone to dc
problems. The first such problem is the dc offset voltage. To understand this problem consider

“We should note that real op amps have nonideal effects additional to those discussed in this chapter.
These include finite (nonzero) common-mode gain or, equivalently, noninfinite CMRR, noninfinite
input resistance, and nonzero output resistance. The effect of these, however, on the performance of
most of the closed-loop circuits studied here is not very significant, and their study will be postponed
to later chapters (in particular, Chapters 9, 10, and 13).
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the following conceptual experiment: If the two input terminals of the op amp are tied together
and connected to ground, it will be found that despite the fact that v, = 0, a finite dc voltage
exists at the output. In fact, if the op amp has a high dc gain, the output will be at either the
positive or negative saturation level. The op-amp output can be brought back to its ideal value
of 0 V by connecting a dc voltage source of appropriate polarity and magnitude between the
two input terminals of the op amp. This external source balances out the input offset voltage
of the op amp. It follows that the input offset voltage (V) must be of equal magnitude and
of opposite polarity to the voltage we applied externally.

The input offset voltage arises as a result of the unavoidable mismatches present in the
input differential stage inside the op amp. In later chapters (in particular Chapters 9 and
13) we shall study this topic in detail. Here, however, our concern is to investigate the
effect of V¢ on the operation of closed-loop op-amp circuits. Toward that end, we note
that general-purpose op amps exhibit V¢ in the range of I mV to 5 mV. Also, the value of V¢
depends on temperature. The op-amp data sheets usually specify typical and maximum values
for V,); at room temperature as well as the temperature coefficient of V¢ (usually in pV/°C).
They do not, however, specify the polarity of V,, because the component mismatches that
give rise to V¢ are obviously not known a priori; different units of the same op-amp type may
exhibit either a positive or a negative V.

To analyze the effect of V¢ on the operation of op-amp circuits, we need a circuit model
for the op amp with input offset voltage. Such a model is shown in Fig. 2.28. It consists of a
dc source of value V¢ placed in series with the positive input lead of an offset-free op amp.
The justification for this model follows from the description above.

/ Actual op amp

Figure 2.28 Circuit model for an op amp with input
offset voltage V.

2.21 Use the model of Fig. 2.28 to sketch the transfer characteristic v,, versus v,,(v, = v, and v, = v, — v,)
of an op amp having an open-loop dc gain A, = 10* V/V, output saturation levels of 10 V, and Vs of
+5mV.

Ans. See Fig. E2.21. Observe that true to its name, the input offset voltage causes an offset in the
voltage-transfer characteristic; rather than passing through the origin it is now shifted to the left by V.




928

Chapter2 Operational Amplifiers

o V)

1av)

)
I

SRR
I

L0 1
3 -2 -1 1 2 3 4 5 6uy@mV)

Figure E2.21 Transfer characteristic of an op amp with V,,; =5 mV.

Analysis of op-amp circuits to determine the effect of the op-amp V,,; on their performance
is straightforward: The input voltage signal source is short-circuited and the op amp is replaced
with the model of Fig. 2.28. (Eliminating the input signal, done to simplify matters, is based on
the principle of superposition.) Following this procedure, we find that both the inverting and
the noninverting amplifier configurations result in the same circuit, that shown in Fig. 2.29,
from which the output dc voltage due to V, is found to be

R
V, = Vos[l + 1?2] (2.36)

1

This output dc voltage can have a large magnitude. For instance, a noninverting amplifier
with a closed-loop gain of 1000, when constructed from an op amp with a 5-mV input offset
voltage, will have a dc output voltage of +5 V or —5 V (depending on the polarity of V)
rather than the ideal value of 0 V. Now, when an input signal is applied to the amplifier,
the corresponding signal output will be superimposed on the 5-V dc. Obviously then, the

Vo= Vos <] + %)

Figure 2.29 Evaluating the output dc off-
set voltage due to V,, in a closed-loop

Offset-free
Op amp amplifier.
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Figure 2.30 The output dc offset voltage
of an op amp can be trimmed to zero
by connecting a potentiometer to the two
offset-nulling terminals. The wiper of the
potentiometer is connected to the negative
supply of the op amp.
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Offset free

Figure 2.31 (a) A capacitively coupled inverting amplifier. (b) The equivalent circuit for determining its dc
output offset voltage V,,.

allowable signal swing at the output will be reduced. Even worse, if the signal to be amplified
is dc, we would not know whether the output is due to V,, or to the signal!

Some op amps are provided with two additional terminals to which a specified circuit
can be connected to trim to zero the output dc voltage due to V. Figure 2.30 shows such
an arrangement that is typically used with general-purpose op amps. A potentiometer is
connected between the offset-nulling terminals with the wiper of the potentiometer connected
to the op-amp negative supply. Moving the potentiometer wiper introduces an imbalance that
counteracts the asymmetry present in the internal op-amp circuitry and that gives rise to V.
We shall return to this point in the context of our study of the internal circuitry of op amps in
Chapter 13. It should be noted, however, that even though the dc output offset can be trimmed
to zero, the problem remains of the variation (or drift) of V,,; with temperature.

One way to overcome the dc offset problem is by capacitively coupling the amplifier.
This, however, will be possible only in applications where the closed-loop amplifier is not
required to amplify dc or very-low-frequency signals. Figure 2.31(a) shows a capacitively
coupled amplifier. Because of its infinite impedance at dc, the coupling capacitor will cause
the gain to be zero at dc. As a result, the equivalent circuit for determining the dc output
voltage resulting from the op-amp input offset voltage V,,¢ will be that shown in Fig. 2.31(b).
Thus Vs sees in effect a unity-gain voltage follower, and the dc output voltage V,, will be
equal to V¢ rather than V,;(1 4+ R,/R,), which is the case without the coupling capacitor. As
far as input signals are concerned, the coupling capacitor C forms together with R, an STC
high-pass circuit with a corner frequency of w, = 1/CR,. Thus the gain of the capacitively
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coupled amplifier will fall off at the low-frequency end [from a magnitude of (1 4+ R,/R,) at
high frequencies] and will be 3 dB down at w,,.

2.22 Consider an inverting amplifier with a nominal gain of 1000 constructed from an op amp with an input
offset voltage of 3 mV and with output saturation levels of =10 V. (a) What is (approximately) the
peak sine-wave input signal that can be applied without output clipping? (b) If the effect of V¢ is nulled
at room temperature (25°C), how large an input can one now apply if: (i) the circuit is to operate at a
constant temperature? (ii) the circuit is to operate at a temperature in the range 0°C to 75°C and the
temperature coefficient of V, is 10 pV/°C?

Ans. (a) 7mV; (b) 10 mV, 9.5 mV

2.23 Consider the same amplifier as in Exercise 2.22—that is, an inverting amplifier with a nominal gain
of 1000 constructed from an op amp with an input offset voltage of 3 mV and with output saturation
levels of 10 V—except here let the amplifier be capacitively coupled as in Fig. 2.31(a). (a) What is
the dc offset voltage at the output, and what (approximately) is the peak sine-wave signal that can be
applied at the input without output clipping? Is there a need for offset trimming? (b) If R, = 1 k€2 and
R, =1 M, find the value of the coupling capacitor C, that will ensure that the gain will be greater
than 57 dB down to 100 Hz.

Ans. (a) 3 mV, 10 mV, no need for offset trimming; (b) 1.6 pF

2.6.2 Input Bias and Offset Currents

The second dc problem encountered in op amps is illustrated in Fig. 2.32. In order for the op
amp to operate, its two input terminals have to be supplied with dc currents, termed the input
bias currents.’ In Fig. 2.32 these two currents are represented by two current sources, I, and
I,, connected to the two input terminals. It should be emphasized that the input bias currents
are independent of the fact that a real op amp has finite (though large) input resistance (not
shown in Fig. 2.32). The op-amp manufacturer usually specifies the average value of I, and
I, as well as their expected difference. The average value I, is called the input bias current,

Iy + 1,
[o— BB
> B B

and the difference is called the input offset current and is given by
> Los = g — Il

Typical values for general-purpose op amps that use bipolar transistors are /, = 100 nA and
I, =10nA.

*This is the case for op amps constructed using bipolar junction transistors (BJTs). Those using
MOSFETs in the first (input) stage do not draw an appreciable input bias current; nevertheless, the
input terminals should have continuous dc paths to ground. More on this in later chapters.
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Figure 2.32 The op-amp input bias currents
represented by two current sources /I, and /,,,.

Figure 2.33 Analysis of the closed-loop amplifier, taking into account the input bias currents.

We now wish to find the dc output voltage of the closed-loop amplifier due to the input
bias currents. To do this we ground the signal source and obtain the circuit shown in Fig. 2.33
for both the inverting and noninverting configurations. As shown in Fig. 2.33, the output dc
voltage is given by

V,=1,R,~I,R, 237) =<
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Figure 2.34 Reducing the effect of the input bias currents by introducing a resistor R,.

This obviously places an upper limit on the value of R,. Fortunately, however, a technique
exists for reducing the value of the output dc voltage due to the input bias currents. The
method consists of introducing a resistance R, in series with the noninverting input lead, as
shown in Fig. 2.34. From a signal point of view, R, has a negligible effect (ideally no effect).
The appropriate value for R, can be determined by analyzing the circuit in Fig. 2.34, where
analysis details are shown, and the output voltage is given by

Vo= —IpR; + Ry Iy, — I, R5/R,) (2.38)
Consider first the case I;; = Iy, = I;, which results in
Vo =15[R, — Ry(1 + R,/R,)]

Thus we can reduce V,, to zero by selecting R, such that

R, R\R,
R, = = 2.39
> "7 14R,J/R, R,+R, 2.39)
That is, R, should be made equal to the parallel equivalent of R, and R,.
Having selected R, as above, let us evaluate the effect of a finite offset current /5. Let
Iy =1, +1,5/2 and I, = I, — I ,5/2, and substitute in Eq. (2.38). The result is
> Vo =1,5R, (2.40)

which is usually about an order of magnitude smaller than the value obtained without R,
(Eq.2.37). We conclude that to minimize the effect of the input bias currents, one should
place in the positive lead a resistance equal to the equivalant dc resistance seen by the
inverting terminal. We emphasize the word dc in the last statement; note that if the amplifier
is ac-coupled, we should select R, = R,, as shown in Fig. 2.35.
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R,
MW
C
o}
+—0
+
Ry =R, Figure 2.35 In an ac-coupled amplifier the dc resis-
— tance seen by the inverting terminal is R,; hence R, is
chosen equal to R,.
R,
——MW——
G
1
} AN -
—0
= °—| +
C Figure 2.36 Illustrating the need for a continuous
2 Ry=R, dc path for each of the op-amp input terminals.

Specifically, note that the amplifier will not work
without resistor R,.

While we are on the subject of ac-coupled amplifiers, we should note that one must always
provide a continuous dc path between each of the input terminals of the op amp and ground.
This is the case no matter how small /, is. For this reason the ac-coupled noninverting amplifier
of Fig. 2.36 will not work without the resistance R, to ground. Unfortunately, including R,
lowers considerably the input resistance of the closed-loop amplifier.

2.24 Consider an inverting amplifier circuit designed using an op amp and two resistors, R, = 10 k€2 and
R, =1MQ. If the op amp is specified to have an input bias current of 100 nA and an input offset current
of 10 nA, find the output dc offset voltage resulting and the value of a resistor R, to be placed in series
with the positive input lead in order to minimize the output offset voltage. What is the new value of
Vy?

Ans. 0.1 V;9.9kQ (>~ 10kR); 0.01 V

2.6.3 Effect of Vps and Ips on the Operation of the
Inverting Integrator

Our discussion of the inverting integrator circuit in Section 2.5.2 mentioned the susceptibility
of this circuit to saturation in the presence of small dc voltages or currents. It behooves us

therefore to consider the effect of the op-amp dc offsets on its operation. As will be seen,
these effects can be quite dramatic.
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Figure 2.37 Determining the effect of the op-amp input offset voltage V,,; on the Miller integrator circuit.
Note that since the output rises with time, the op amp eventually saturates.

To see the effect of the input dc offset voltage V,, consider the integrator circuit in
Fig.2.37, where for simplicity we have short-circuited the input signal source. Analysis of
the circuit is straightforward and is shown in Fig. 2.37. Assuming for simplicity that at time
t = 0 the voltage across the capacitor is zero, the output voltage as a function of time is
given by

> Vo = Vs + %t (2.41)
Thus v,, increases linearly with time until the op amp saturates—clearly an unacceptable
situation! As should be expected, the dc input offset current /,,; produces a similar problem.
Figure 2.38 illustrates the situation. Observe that we have added a resistance R in the
op-amp positive-input lead in order to keep the input bias current /, from flowing through C.
Nevertheless, the offset current /,,; will flow through C and cause v,, to ramp linearly with
time until the op amp saturates.

As mentioned in Section 2.5.2 the dc problem of the integrator circuit can be alleviated
by connecting a resistor R across the integrator capacitor C, as shown in Fig. 2.25. Such a
resistor provides a dc path through which the dc currents (V,/R) and I ,; can flow (assuming
a resistance equal to R|| R, is connected in the positive op-amp lead), with the result that v,
will now have a dc component [V,(1 4+ R./R) +1,4R,] instead of rising linearly. To keep the
dc offset at the output small, one would select a low value for R,. Unfortunately, however,
the lower the value of R, the less ideal the integrator circuit becomes.

a

\L(lm = Ig) = Ips

I3,R/R = Ip, I
B2 B2 R Bl

—0 U

Lo
vp = —IpR + %

= —IpR

Figure 2.38 Effect of the op-amp input bias and offset currents on the performance of the Miller integrator
circuit.
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2.25 Consider a Miller integrator with a time constant of 1 ms and an input resistance of 10 k2. Let the
op amp have V,,; =2 mV and output saturation voltages of +12 V. (a) Assuming that when the power
supply is turned on the capacitor voltage is zero, how long does it take for the amplifier to saturate?
(b) Select the largest possible value for a feedback resistor R, so that at least 210 V of output signal
swing remains available. What is the corner frequency of the resulting STC network?

Ans. (a) 6s; (b) 10 M2, 0.16 Hz

2.7 Effect of Finite Open-Loop Gain and
Bandwidth on Circuit Performance

2.7.1 Frequency Dependence of the Open-Loop Gain

The differential open-loop gain A of an op amp is not infinite; rather, it is finite and
decreases with frequency. Figure 2.39 shows a plot for |A|, with the numbers typical of
some commercially available general-purpose op amps (such as the popular 741-type op
amp, available from many semiconductor manufacturers; its internal circuit is studied in
Chapter 13).

|A] (dB)
A
Ay —> 100 4{ 3dB
|
|
80 |
|
| —20 dB/decade
60 - i or
| —6 dB/octave
40 I
|
20 I
|
|
0 I

| | | 1 | >
10 1020 100 10 10° 106\ 107 f(Hgz)

T i

Figure 2.39 Open-loop gain of a typical general-purpose, internally compensated op amp.
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Note that although the gain is quite high at dc and low frequencies, it starts to fall off at a
rather low frequency (10 Hz in our example). The uniform —20-dB/decade gain rolloff shown
is typical of internally compensated op amps. These are units that have a network (usually a
single capacitor) included within the same IC chip whose function is to cause the op-amp gain
to have the single-time-constant (STC) low-pass response shown. This process of modifying
the open-loop gain is termed frequency compensation, and its purpose is to ensure that
op-amp circuits will be stable (as opposed to oscillatory). The subject of stability of op-amp
circuits—or, more generally, of feedback amplifiers—will be studied in Chapter 11.

By analogy to the response of low-pass STC circuits (see Section 1.6 and, for more detail,
Appendix E), the gain A(s) of an internally compensated op amp may be expressed as

A
A(s) = 0 2.42
> ©= T3y (2.42)
which for physical frequencies, s = jw, becomes
. AO
> A(jo) = —>— (2.43)

1+jwlw,

where A, denotes the dc gain and w, is the 3-dB frequency (corner frequency or “break”
frequency). For the example shown in Fig. 2.39, A, = 10’ and w, = 27 x 10 rad/s. For
frequencies w > w, (about 10 times and higher) Eq. (2.43) may be approximated by

. Ay,
A(jw) ~ — (2.44)
jo
Thus,
. Ayw,
A(jo)| = —— (2.45)
1)
from which it can be seen that the gain |A| reaches unity (0 dB) at a frequency denoted by w,
and given by
> w, =A,w, (2.46)

Substituting in Eq. (2.44) gives

w

> A(jw) ~ — (2.47)
Jw

The frequency f, = w,/27 is usually specified on the data sheets of commercially available op
amps and is known as the unity-gain bandwidth.’ Also note that for @ > w, the open-loop
gain in Eq. (2.42) becomes

wt

> A(s) ~ — (2.48)

N

*Since £, is the product of the dc gain A, and the 3-dB bandwidth f, (where f, = w,/27), it is also known
as the gain—-bandwidth product (GB). The reader is cautioned, however, that in some amplifiers (those
that do not have an STC response), the unity-gain frequency and the gain—bandwidth product are not
equal.
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The gain magnitude can be obtained from Eq. (2.47) as

G|~ 2 = 249 <<
w f

Thus if , is known (10° Hz in our example), one can easily determine the magnitude of the
op-amp gain at a given frequency f. Furthermore, observe that this relationship correlates with
the Bode plot in Fig. 2.39. Specifically, for f > f,, doubling f (an octave increase) results
in halving the gain (a 6-dB reduction). Similarly, increasing f by a factor of 10 (a decade
increase) results in reducing |A| by a factor of 10 (20 dB).

As a matter of practical importance, we note that the production spread in the value of
f, between op-amp units of the same type is usually much smaller than that observed for
A, and f,. For this reason f, is preferred as a specification parameter. Finally, it should be
mentioned that an op amp having this uniform —6-dB/octave (or equivalently —20-dB/decade)
gain rolloff is said to have a single-pole model. Also, since this single pole dominates the
amplifier frequency response, it is called a dominant pole. For more on poles (and zeros), the
reader may wish to consult Appendix F.

2.26 Aninternally compensated op amp is specified to have an open-loop dc gain of 106 dB and a unity-gain
bandwidth of 3 MHz. Find f, and the open-loop gain (in dB) atf,, 300 Hz, 3 kHz, 12 kHz, and 60 kHz.
Ans. 15 Hz; 103 dB; 80 dB; 60 dB; 48 dB; 34 dB

2.7.2 Frequency Response of Closed-Loop Amplifiers

We next consider the effect of limited op-amp gain and bandwidth on the closed-loop transfer
functions of the two basic configurations: the inverting circuit of Fig. 2.5 and the noninverting
circuit of Fig. 2.12. The closed-loop gain of the inverting amplifier, assuming a finite op-amp
open-loop gain A, was derived in Section 2.2 and given in Eq. (2.5), which we repeat here as

v, —R,/R,
L= 2.50
V, " 1+ (1 +R/R,)/A @50 <
Substituting for A from Eq. (2.42) and using Eq. (2.46) gives
V,(s) _ —R,/R, 2.51)
Vi(s) (LR s '
I+ — 1+ )+—
A, R, o,/(14+R,/R,)
For A, > 1 +R,/R,, which is usually the case,
Vv, —R,/R
o(9) el 25) =
Vils) 1+

w/(I+R,/R,)
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which is of the same form as that for a low-pass STC network (see Table 1.2, page 36). Thus
the inverting amplifier has an STC low-pass response with a dc gain of magnitude equal to
R,/R,. The closed-loop gain rolls off at a uniform —20-dB/decade slope with a corner frequency
(3-dB frequency) given by

)

= 2.53

Wsqp 1+ RJR, ( )

Similarly, analysis of the noninverting amplifier of Fig. 2.12, assuming a finite open-loop
gain A, yields the closed-loop transfer function

1% 1+ R,/R,

R e S (2.54)
14+ (1+R,/R))/A

v,

1

Substituting for A from Eq. (2.42) and making the approximation A, 3> 1 4+ R,/R, results in

V) 1+RJR,

Vi) 14—
o (L RJR)

(2.55)

Thus the noninverting amplifier has an STC low-pass response with a dc gain of (1 +R,/R))
and a 3-dB frequency given also by Eq. (2.53).

Example 2.6

Consider an op amp with f; = 1 MHz. Find the 3-dB frequency of closed-loop amplifiers with nominal
gains of 41000, 4100, +10, +1, —1, —10, —100, and —1000. Sketch the magnitude frequency response
for the amplifiers with closed-loop gains of +10 and —10.

Solution

We use Eq. (2.53) to obtain the results given in the following table.

Closed-Loop Gain  R,/R, f3 g =f/(1 +R,/R,)

-+1000 999 1 kHz
+100 99 10 kHz

+10 9 100 kHz

+1 0 1 MHz

— 1 1 0.5 MHz

—10 10 90.9 kHz

—100 100 9.9 kHz
—1000 1000 ~ | kHz

Figure 2.40 shows the frequency response for the amplifier whose nominal dc gain is +10 (20 dB), and
Fig. 2.41 shows the frequency response for the —10 (also 20 dB) case. An interesting observation follows
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from the table above: The unity-gain inverting amplifier has a 3-dB frequency of f,/2 as compared to f, for
the unity-gain noninverting amplifier (the unity-gain voltage follower).

Y
v (dB)
A

20 J 3dB
|
|

10 | —20 dB/decade
-\
|

] ! ] | ] 1 -
102 10! 1 10 100 1000 10* f(kHz)

Figure 2.40 Frequency response of an amplifier with a nominal gain of +10 V/V.

%
I (dB)
A
20 =2\ 3dB
|
|
10~ i — 20 B/decade
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L >
90.9

909 / (kHz)

Figure 2.41 Frequency response of an amplifier with a nominal gain of —10 V/V.

The table in Example 2.6 above clearly illustrates the trade-off between gain and
bandwidth: For a given op amp, the lower the closed-loop gain required, the wider
the bandwidth achieved. Indeed, the noninverting configuration exhibits a constant
gain—bandwidth product equal to f, of the op amp. An interpretation of these results in
terms of feedback theory will be given in Chapter 11.
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2.27 An internally compensated op amp has a dc open-loop gain of 10° V/V and an open-loop gain of 40
dB at 10 kHz. Estimate its 3-dB frequency, its unity-gain frequency, its gain—bandwidth product, and
its expected gain at 1 kHz.

Ans. 1 Hz; 1 MHz; 1 MHz; 60 dB

2.28 Anop amp having a 106-dB gain at dc and a single-pole frequency response with f, =2 MHz is used to
design a noninverting amplifier with nominal dc gain of 100. Find the 3-dB frequency of the closed-loop
gain.

Ans. 20 kHz

2.8 Large-Signal Operation of Op Amps

In this section, we study the limitations on the performance of op-amp circuits when large
output signals are present.

2.8.1 Output Voltage Saturation

Similar to all other amplifiers, op amps operate linearly over a limited range of output voltages.
Specifically, the op-amp output saturates in the manner shown in Fig. 1.14 with L, and L_
within 1 V or so of the positive and negative power supplies, respectively. Thus, an op amp that
is operating from 15-V supplies will saturate when the output voltage reaches about +13 Vin
the positive direction and —13 V in the negative direction. For this particular op amp the rated
output voltage is said to be =13 V. To avoid clipping off the peaks of the output waveform,
and the resulting waveform distortion, the input signal must be kept correspondingly
small.

2.8.2 Output Current Limits

Another limitation on the operation of op amps is that their output current is limited to a
specified maximum. For instance, the popular 741 op amp is specified to have a maximum
output current of £20 mA. Thus, in designing closed-loop circuits utilizing the 741, the
designer has to ensure that under no condition will the op amp be required to supply an output
current, in either direction, exceeding 20 mA. This, of course, has to include both the current
in the feedback circuit as well as the current supplied to a load resistor. If the circuit requires
a larger current, the op-amp output voltage will saturate at the level corresponding to the
maximum allowed output current.
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Example 2.7

Consider the noninverting amplifier circuit shown in Fig. 2.42. As shown, the circuit is designed for a
nominal gain (1+ R,/R,) =10 V/V. It is fed with a low-frequency sine-wave signal of peak voltage V,
and is connected to a load resistor R, . The op amp is specified to have output saturation voltages of £13 V
and output current limits of £20 mA.

(a) For V, =1V and R, = 1k, specify the signal resulting at the output of the amplifier.

(b) ForV, = 1.5V and R, = 1 k€2, specify the signal resulting at the output of the amplifier.

(c) For R, = 1kS, what is the maximum value of V, for which an undistorted sine-wave output is
obtained?

(d) For V,=1V, what is the lowest value of R, for which an undistorted sine-wave output is obtained?

’ —~s-==15V
’ AY

-—-13V
Yo 0 I >
'

=i~ —

15V —— =2l

(@ (b)

Figure 2.42 (a) A noninverting amplifier with a nominal gain of 10 V/V designed using an op amp that saturates at
+13-V output voltage and has £20-mA output current limits. (b) When the input sine wave has a peak of 1.5 V, the
output is clipped off at £13 V.

Solution

(a) For V, =1V and R, = 1 k<, the output will be a sine wave with peak value of 10 V. This is lower
than output saturation levels of £13 V, and thus the amplifier is not limited that way. Also, when the
output is at its peak (10 V), the current in the load will be 10 V/1 k€2 = 10 mA, and the current in the
feedback network will be 10 V/(9 + 1) k2 = 1 mA, for a total op-amp output current of 11 mA, well
under its limit of 20 mA.

(b) Now if V, is increased to 1.5 V, ideally the output would be a sine wave of 15-V peak. The op amp,
however, will saturate at £13 V, thus clipping the sine-wave output at these levels. Let’s next check
on the op-amp output current: At 13-V output and R, = 1k, i, = 13 mA and i, = 1.3 mA; thus
i, = 14.3 mA, again under the 20-mA limit. Thus the output will be a sine wave with its peaks clipped
off at 213 V, as shown in Fig. 2.42(b).

(c) For R, = 1k, the maximum value of V, for undistorted sine-wave output is 1.3 V. The output will
be a 13-V peak sine wave, and the op-amp output current at the peaks will be 14.3 mA.
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Example 2.7 continued

(d) For V, =1V and R, reduced, the lowest value possible for R, while the output is remaining an
undistorted sine wave of 10-V peak can be found from

. v N v
l = mA =
omax R,.. 9kQ+1kQ

which results in

2.8.3 Slew Rate

Another phenomenon that can cause nonlinear distortion when large output signals are present
is slew-rate limiting. The name refers to the fact that there is a specific maximum rate of change
possible at the output of a real op amp. This maximum is known as the slew rate (SR) of the
op amp and is defined as

_dv,

> SR = " (2.56)

max

and is usually specified on the op-amp data sheet in units of V/us. It follows that if the input
signal applied to an op-amp circuit is such that it demands an output response that is faster
than the specified value of SR, the op amp will not comply. Rather, its output will change
at the maximum possible rate, which is equal to its SR. As an example, consider an op amp
connected in the unity-gain voltage-follower configuration shown in Fig. 2.43(a), and let the
input signal be the step voltage shown in Fig. 2.43(b). The output of the op amp will not be
able to rise instantaneously to the ideal value V; rather, the output will be the linear ramp of
slope equal to SR, shown in Fig. 2.43(c). The amplifier is then said to be slewing, and its
output is slew-rate limited.

In order to understand the origin of the slew-rate phenomenon, we need to know about
the internal circuit of the op amp, and we will study it in Chapter 13. For the time being,
however, it is sufficient to know about the phenomenon and to note that it is distinct
from the finite op-amp bandwidth that limits the frequency response of the closed-loop
amplifiers, studied in the previous section. The limited bandwidth is a linear phenomenon
and does not result in a change in the shape of an input sinusoid; that is, it does not lead
to nonlinear distortion. The slew-rate limitation, on the other hand, can cause nonlinear
distortion to an input sinusoidal signal when its frequency and amplitude are such that the
corresponding ideal output would require v, to change at a rate greater than SR. This is
the origin of another related op-amp specification, its full-power bandwidth, to be explained
later.

Before leaving the example in Fig. 2.43, however, we should point out that if the step
input voltage V is sufficiently small, the output can be the exponentially rising ramp shown
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Figure 2.43 (a) Unity-gain follower. (b) Input step waveform. (¢) Linearly rising output waveform obtained
when the amplifier is slew-rate limited. (d) Exponentially rising output waveform obtained when V is
sufficiently small so that the initial slope (w,V) is smaller than or equal to SR.

in Fig. 2.43(d). Such an output would be expected from the follower if the only limitation
on its dynamic performance were the finite op-amp bandwidth. Specifically, the transfer
function of the follower can be found by substituting R, = co and R, = 0 in Eq. (2.55) to
obtain

V 1
) 2.57
v (2.57)

T 1+ slo,

which is a low-pass STC response with a time constant 1/w,. Its step response would therefore
be (see Appendix E)

0,(H) = V(1 — ™" (2.58)

The initial slope of this exponentially rising function is (w, V). Thus, as long as V is sufficiently
small so that w,V < SR, the output will be as in Fig. 2.43(d).

113
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2.29 An op amp that has a slew rate of 1 V/us and a unity-gain bandwidth f, of 1 MHz is connected in
the unity-gain follower configuration. Find the largest possible input voltage step for which the output
waveform will still be given by the exponential ramp of Eq. (2.58). For this input voltage, what is the
10% to 90% rise time of the output waveform? If an input step 10 times as large is applied, find the
10% to 90% rise time of the output waveform.

Ans. 0.16 V; 0.35 ps; 1.28 s

2.8.4 Full-Power Bandwidth

Op-amp slew-rate limiting can cause nonlinear distortion in sinusoidal waveforms. Consider
once more the unity-gain follower with a sine-wave input given by

v, = ‘7, sin wt
The rate of change of this waveform is given by

dv, v ;
o = @Vicosw

with a maximum value of a)\7, This maximum occurs at the zero crossings of the input sinusoid.
Now if a)f/, exceeds the slew rate of the op amp, the output waveform will be distorted in
the manner shown in Fig. 2.44. Observe that the output cannot keep up with the large rate of
change of the sinusoid at its zero crossings, and the op amp slews.

The op-amp data sheets usually specify a frequency f,, called the full-power bandwidth.
It is the frequency at which an output sinusoid with amplitude equal to the rated output voltage
of the op amp begins to show distortion due to slew-rate limiting. If we denote the rated output

Theoretical
output

Output when op amp
is slew-rate limited

Figure 2.44 Effect of slew-rate limiting on output sinusoidal waveforms.
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voltage V, .., then f}, is related to SR as follows:
Wy Vamax = SR
Thus,
SR
= 2.59 <
fu= 50y (2.59)

omax

It should be obvious that output sinusoids of amplitudes smaller than V. will show slew-rate
distortion at frequencies higher than w,,. In fact, at a frequency w higher than w,,, the maximum

amplitude of the undistorted output sinusoid is given by

V,= Vm(a;—M) 2.60) =

2.30 An op amp has a rated output voltage of +10 V and a slew rate of 1 V/us. What is its full-power
bandwidth? If an input sinusoid with frequency f = 5f,, is applied to a unity-gain follower constructed
using this op amp, what is the maximum possible amplitude that can be accommodated at the output
without incurring SR distortion?

Ans. 15.9 kHz; 2 V (peak)

Summary

m The IC op amp is a versatile circuit building block. It is causes the voltage between the two input terminals to

easy to apply, and the performance of op-amp circuits
closely matches theoretical predictions.

The op-amp terminals are the inverting input terminal (1),
the noninverting input terminal (2), the output terminal
(3), the positive-supply terminal (4) to be connected to
the positive power supply (V,..), and the negative-supply
terminal (5) to be connected to the negative supply (— V).
The common terminal of the two supplies is the circuit
ground.

The ideal op amp responds only to the difference input
signal, that is, (v, — v,); it provides at the output, between
terminal 3 and ground, a signal A(v, — v,), where A, the
open-loop gain, is very large (10" to 10°) and ideally
infinite; and it has an infinite input resistance and a zero
output resistance. (See Table 2.1.)

m Negative feedback is applied to an op amp by connecting

a passive component between its output terminal and its
inverting (negative) input terminal. Negative feedback

become very small and ideally zero. Correspondingly, a
virtual short circuit is said to exist between the two input
terminals. If the positive input terminal is connected to
ground, a virtual ground appears on the negative input
terminal.

The two most important assumptions in the analy-
sis of op-amp circuits, presuming negative feedback
exists and the op amps are ideal, are as follows: the
two input terminals of the op amp are at the same
voltage, and zero current flows into the op-amp input
terminals.

m  With negative feedback applied and the loop closed,

the closed-loop gain is almost entirely determined by
external components: For the inverting configuration,
V,IV.= —R,/R,; and for the noninverting configuration,
VIV,=1+R,/R,.

The noninverting closed-loop configuration features a
very high input resistance. A special case is the unity-gain
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follower, frequently employed as a buffer amplifier to
connect a high-resistance source to a low-resistance load.

m The difference amplifier of Fig. 2.16 is designed with
R,/Ry =R,/R,, resulting in v, = (R,/R,)(v;, — v;)).

m The instrumentation amplifier of Fig. 2.20(b) is a
very popular circuit. It provides v, = (1+4R,/R,)(R,/R;)
(v, — v,y). Itis usually designed with R, =R,, and R, and
R, selected to provide the required gain. If an adjustable
gain is needed, part of R, can be made variable.

m The inverting Miller integrator of Fig. 2.24(a) is a popular
circuit, frequently employed in analog signal-processing
functions such as filters (Chapter 17) and oscillators
(Chapter 18).

m The input offset voltage, V,, is the magnitude of dc
voltage that when applied between the op-amp input
terminals, with appropriate polarity, reduces the dc offset
voltage at the output to zero.

m  The effect of V5 on performance can be evaluated by
including in the analysis a dc source V, in series with
the op-amp positive input lead. For both the inverting and
the noninverting configurations, V¢ results in a dc offset
voltage at the output of V(1 +R,/R)).

m Capacitively coupling an op amp reduces the dc offset
voltage at the output considerably.

m The average of the two dc currents, /,, and [,,, that
flow in the input terminals of the op amp, is called the

PROBLEMS

Computer Simulation Problems

HEIW Problems identified by the Multisim/PSpice icon are
intended to demonstrate the value of using SPICE simulation
to verify hand analysis and design, and to investigate
important issues such as allowable signal swing and amplifier
nonlinear distortion. Instructions to assist in setting up PSPice
and Multisim simulations for all the indicated problems
can be found in the corresponding files on the website.
Note that if a particular parameter value is not specified

input bias current, /. In a closed-loop amplifier, /, gives
rise to a dc offset voltage at the output of magnitude
I;R,. This voltage can be reduced to /4R, by connecting
a resistance in series with the positive input terminal
equal to the total dc resistance seen by the negative
input terminal. /,, is the input offset current; that is,
Log =y — I,

= Connecting alarge resistance in parallel with the capacitor
of an op-amp inverting integrator prevents op-amp
saturation (due to the effect of V,,; and I).

m  For most internally compensated op amps, the open-loop
gain falls off with frequency at a rate of —20 dB/decade,
reaching unity at a frequency f, (the unity-gain band-
width). Frequency f, is also known as the gain-bandwidth
product of the op amp: f, = A, f,, where A, is the dc gain,
and f, is the 3-dB frequency of the open-loop gain. At any
frequency f(f > f,), the op-amp gain |A| > f,/f.

m For both the inverting and the noninverting closed-
loop configurations, the 3-dB frequency is equal to
/(1 +R,/R)).

m The maximum rate at which the op-amp output voltage
can change is called the slew rate. The slew rate, SR, is
usually specified in V/ps. Op-amp slewing can result in
nonlinear distortion of output signal waveforms.

m The full-power bandwidth, f,,, is the maximum frequency
at which an output sinusoid with an amplitude equal to
the op-amp rated output voltage (V, ..) can be produced
without distortion: f,, = SR/2wV,

omax *

max

in the problem statement, you are to make a reasonable
assumption.

Section 2.1: The Ideal Op Amp

2.1 What is the minimum number of pins required for a
so-called dual-op-amp IC package, one containing two op
amps? What is the number of pins required for a so-called
quad-op-amp package, one containing four op-amps?

IEIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem



2.2 The circuit of Fig. P2.2 uses an op amp that is ideal except
for having a finite gain A. Measurements indicate v, =4.0 V
when v, = 1.0 V. What is the op-amp gain A?

)
u Uo

Figure P2.2

2.3 Measurement of a circuit incorporating what is thought to
be an ideal op amp shows the voltage at the op-amp output to
be —2.000 V and that at the negative input to be —1.000 V. For
the amplifier to be ideal, what would you expect the voltage at
the positive input to be? If the measured voltage at the positive
input is —1.005 V, what is likely to be the actual gain of the
amplifier?

2.4 A set of experiments is run on an op amp that is ideal
except for having a finite gain A. The results are tabulated
below. Are the results consistent? If not, are they reasonable,
in view of the possibility of experimental error? What do
they show the gain to be? Using this value, predict values of
the measurements that were accidentally omitted (the blank

entries).

Experiment # i @) Y0
1 0.00 0.00 0.00
2 1.00 1.00 0.00
3 1.00 1.00
4 1.00 1.10 10.1
5 2.01 2.00 —0.99
6 1.99 2.00 1.00
7 5.10 —5.10

2.5 Refer to Exercise 2.3. This problem explores an alter-
native internal structure for the op amp. In particular,
we wish to model the internal structure of a particular
op amp using two transconductance amplifiers and one
transresistance amplifier. Suggest an appropriate topology.
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find
an expression for the open-loop gain A. For G,, = 40 mA/V
and R, =1x 10° , what value of A results?

For equal transconductances G,, and a transresistance R

m>

2.6 The two wires leading from the output terminals of a
transducer pick up an interference signal that is a 60-Hz, 2-V
sinusoid. The output signal of the transducer is sinusoidal of
5-mV amplitude and 1000-Hz frequency. Give expressions
for v,,,v,, and the total signal between each wire and the

system ground.

2.7 Nonideal (i.e., real) operational amplifiers respond to
both the differential and common-mode components of their
input signals (refer to Fig. 2.4 for signal representation). Thus
the output voltage of the op amp can be expressed as

cm 7chm

v, =A,v,+A

where A, is the differential gain (referred to simply as A
in the text) and A
be zero in the text). The op amp’s effectiveness in rejecting
common-mode signals is measured by its CMRR, defined as

is the common-mode gain (assumed to

cm

A
CMRR = 20 log A—"’

cm

Consider an op amp whose internal structure is of the type
shown in Fig. E2.3 except for a mismatch AG, between the
transconductances of the two channels; that is,

G, =G,-3AG,

G,,=G,+3AG,
and CMRR. What is the

maximum permitted percentage mismatch between the two
G, values if a minimum CMRR of 60 dB is required?

Find expressions for A,, A

cm?

Section 2.2: The Inverting Configuration

2.8 Assuming ideal op amps, find the voltage gain v, /v; and
input resistance R, of each of the circuits in Fig. P2.8.

2.9 A particular inverting circuit uses an ideal op amp
and two 10-kS2 resistors. What closed-loop gain would you
expect? If a dc voltage of +1.00 V is applied at the input,
what outputs result? If the 10-kS2 resistors are said to be “1%
resistors,” having values somewhere in the range (1 £0.01)
times the nominal value, what range of outputs would you
expect to actually measure for an input of precisely 1.00 V?

HIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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100 kQ 100 kQ
AvAvA' AvAvAv
20 kO 20 kQ
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- = < 20k
1
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100 kQ 100 kQ
AVAVAV AVAVAV
20 kQ) 20 kQ
vy O—AMWW—4 v; O——ANN—
S ——O v, —O0 v,
20kQ
<L — = 20kQ
- (©) (d)
Figure P2.8
2.10 You are provided with an ideal op amp and three 10-k2  (c) —5 V/V
resistors. Using series and parallel resistor combinations, (d) —100 V/V

how many different inverting-amplifier circuit topologies are
possible? What is the largest (noninfinite) available voltage
gain magnitude? What is the smallest (nonzero) available gain
magnitude? What are the input resistances in these two cases?

T 2.11 For ideal op amps operating with the following
feedback networks in the inverting configuration, what
closed-loop gain results?

(a) R, =10kQ,R, =10kQ
(b) R, = 10Kk, R, = 100 k2
() R, =10kQ,R, =1kQ
(d) R, =100kRQ,R, = 10 MQ
(e) R, =100kQ.R, = 1 MQ

D 2.12 Given an ideal op amp, what are the values of the
resistors R, and R, to be used to design amplifiers with the
closed-loop gains listed below? In your designs, use at least
one 10-k2 resistor and another equal or larger resistor.

(@) —1V/V
(b) —2 VIV

IEIM = Multisim/PSpice; * = difficult problem; ** = more difficult; ***

D 2.13 Design an inverting op-amp circuit for which the gain
is —10 V/V and the total resistance used is 110 k2.

D 2.14 Using the circuit of Fig. 2.5 and assuming an ideal op
amp, design an inverting amplifier with a gain of 46 dB having
the largest possible input resistance under the constraint of
having to use resistors no larger than 1 MS2. What is the input
resistance of your design?

2.15 Anideal op amp is connected as shown in Fig. 2.5 with
R, =10k and R, = 100 k2. A symmetrical square-wave
signal with levels of 0 V and —1 V is applied at the input.
Sketch and clearly label the waveform of the resulting output
voltage. What is its average value? What is its highest value?
What is its lowest value?

2.16 For the circuit in Fig. P2.16, assuming an ideal op amp,
find the currents through all branches and the voltages at all
nodes. Since the current supplied by the op amp is greater
than the current drawn from the input signal source, where
does the additional current come from?

= very challenging; D = design problem



10 kQ
——AMW—
1 kQ
——O
-1V P
2 2 k(O
Figure P2.16

2.17 An inverting op-amp circuit is fabricated with the
resistors R, and R, having x% tolerance (i.e., the value of each
resistance can deviate from the nominal value by as much as
+x%). What is the tolerance on the realized closed-loop gain?
Assume the op amp to be ideal. If the nominal closed-loop
gain is —100 V/V and x = 1, what is the range of gain values
expected from such a circuit?

2.18 Anideal op amp with 5-k<2 and 15-k<2 resistors is used
to create a +5-V supply from a —15-V reference. Sketch
the circuit. What are the voltages at the ends of the 5-k2
resistor? If these resistors are so-called 1% resistors, whose
actual values are the range bounded by the nominal value
+1%, what are the limits of the output voltage produced? If
the —15-V supply can also vary by +1%, what is the range
of the output voltages that might be found?

2.19 Aninverting op-amp circuit for which the required gain
is =50 V/V uses an op amp whose open-loop gain is only
500 V/V.If the larger resistor used is 100 k€2, to what must the
smaller be adjusted? With what resistor must a 2-k2 resistor
connected to the input be shunted to achieve this goal? (Note
that a resistor R, is said to be shunted by resistor R, when R,
is placed in parallel with R,.)

D 2.20 (a) Design an inverting amplifier with a closed-loop
gain of —200 V/V and an input resistance of 1 k2.

(b) If the op amp is known to have an open-loop gain of 5000
V/V, what do you expect the closed-loop gain of your circuit
to be (assuming the resistors have precise values)?

(c) Give the value of a resistor you can place in parallel
(shunt) with R, to restore the closed-loop gain to its
nominal value. Use the closest standard 1% resistor value
(see Appendix J).

2.21 An op amp with an open-loop gain of 5000 V/V is used
in the inverting configuration. If in this application the output
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voltage ranges from —10 V to +10 V, what is the maximum
voltage by which the “virtual ground node” departs from its
ideal value?

2.22 The circuit in Fig. P2.22 is frequently used to provide
an output voltage v, proportional to an input signal current i,.

Ry

Figure P2.22

Derive expressions for the transresistance R, = v,/i; and the
input resistance R, = v,/i; for the following cases:

(a) A is infinite.
(b) A is finite.
2.23 Show that for the inverting amplifier if the op-amp gain

is A, the input resistance is given by

R2
A+1

Rin = Rl +

2.24 For an inverting amplifier with nominal closed-loop
gain R,/R,, find the minimum value that the op-amp open-loop
gain A must have (in terms of R,/R, ) so that the gain error (due
to the finite A) is limited to 0.1%, 1%, and 10%. In each case
find the value of a resistor R,, such that when it is placed in
shunt with R, the gain is restored to its nominal value.

#2.25 Figure P2.25 shows an op amp that is ideal except
for having a finite open-loop gain and is used to realize an
inverting amplifier whose gain has a nominal magnitude
G = R,)/R,. To compensate for the gain reduction due to

R, R,
——MWA——
yol 1]
R, —oOV,
Figure P2.25
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the finite A, a resistor R, is shunted across R,. Show
that perfect compensation is achieved when R, is selected

according to
R A-G

C

R, 1+G

D #2.26 (a) Use Eq. (2.5) to obtain the amplifier open-loop
gain A required to realize a specified closed-loop gain
(G, —R,/R,) within a specified gain error €,

nominal

E

‘G—G

nominal
G,

nominal
(b) Design an inverting amplifer for a nominal closed-loop

gain of —100, an input resistance of 1 k€2, and a gain error of
<10%. Specity R, R,, and the minimum A required.

#2.27 (a) Use Eq. (2.5) to show that a reduction AA in the
op-amp gain A gives rise to a reduction A |G| in the magnitude
of the closed-loop gain G with A|G| and AA related by

AlGI/|G| _ 1+R,IR,
AA A

R AA
Assume that (1 + R—2> < A and - < 1.

1
(b) If in a closed-loop amplifier with a nominal gain (i.e.,
R,/R)) of 100, A decreases by 10%, what is the minimum
nominal A required to limit the percentage change in |G| to
0.1%?

2.28 Consider the circuit in Fig. 2.8 with R, =R, =R, =
1 M€, and assume the op amp to be ideal. Find values for R,
to obtain the following gains:

(a) —100 V/V
(b) —10 V/V
(€) —2V/V

D 2.29 An inverting op-amp circuit using an ideal op amp
must be designed to have a gain of —500 V/V using resistors
no larger than 100 k€.

(a) For the simple two-resistor circuit, what input resistance
would result?

(b) If the circuit in Fig. 2.8 is used with three resistors of
maximum value, what input resistance results? What is
the value of the smallest resistor needed?

2.30 The inverting circuit with the T network in the feedback
is redrawn in Fig. P2.30 in a way that emphasizes the
observation that R, and R, in effect are in parallel (because
the ideal op amp forces a virtual ground at the inverting input
terminal). Use this observation to derive an expression for the
gain (v,/v,) by first finding (vy/v,) and (v,/vy). For the latter
use the voltage-divider rule applied to R, and (R, || R;).

—0,

Figure P2.30
#2.31 The circuit in Fig. P2.31 can be considered to be an
extension of the circuit in Fig. 2.8.

(a) Find the resistances looking into node 1, R; node 2, R;
node 3, R,; and node 4, R,.

- Ideal

Figure P2.31
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(b) Find the currents /,, ,, I;, and I,, in terms of the input
current /.

(c) Find the voltages at nodes 1, 2, 3, and 4, that is, V,, V,,
V,, and V, in terms of (IR).

2.32 The circuit in Fig. P2.32 utilizes an ideal op amp.

(a) FindI,,L,,1,,1,,and V..

(b) If V, is not to be lower than —13 V, find the maximum
allowed value for R, .

(c) If R, is varied in the range 100 2 to 1 k€2, what is the
corresponding change in /, and in V,?

oV,

Figure P2.32

D 2.33 Use the circuit in Fig. P2.32 as an inspiration to
design a circuit that supplies a constant current /, of 3.1 mA
to a variable resistance R,. Assume the availability of a
1.5-V battery and design so that the current drawn from the
battery is 0.1 mA. For the smallest resistance in the circuit, use
500 2. If the op amp saturates at =10 V, what is the maximum
value that R, can have while the current source supplying it
operates properly?

D 2.34 Assuming the op amp to be ideal, it is required to
design the circuit shown in Fig. P2.34 to implement a current
amplifier with gain i, /i, = 11 A/A.

(a) Find the required value for R.

(b) Whatare the input and the output resistance of this current
amplifier?

(c) If R, =1k and the op amp operates in an ideal manner
as long as v,, is in the range £12 V, what range of i, is
possible?

(d) If the amplifier is fed with a current source having a
current of 0.2 mA and a source resistance of 10 k€2, find i, .

Problems 121

10kQ 2 R,

Figure P2.34

D 2.35 Design the circuit shown in Fig. P2.35 to have an
input resistance of 100 k2 and a gain that can be varied
from —1 V/V to —100 V/V using the 100-kS2 potentiometer
R,. What voltage gain results when the potentiometer is set
exactly at its middle value?

Figure P2.35

2.36 A weighted summer circuit using an ideal op amp has
three inputs using 10-k€2 resistors and a feedback resistor of
50 k€2. A signal v, is connected to two of the inputs while a
signal v, is connected to the third. Express v,, in terms of v,
and v,. If v, =1V and v, = -1V, what is v,,?

D 2.37 Design an op-amp circuit to provide an output
v, = —[2v, + (v,/2)]. Choose relatively low values of
resistors but ones for which the input current (from each
input signal source) does not exceed 50 wA for 1-V input
signals.

D 2.38 Use the scheme illustrated in Fig. 2.10 to design an
op-amp circuit with inputs v, v,, and v,, whose output is

HIN = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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v, = —(2v,4 4v,+ 8v,) using small resistors but no smaller
than 1 kQ.

D 2.39 Anideal op ampis connected in the weighted summer
configuration of Fig. 2.10. The feedback resistor R, = 100 k<2,
and six 100-k<2 resistors are connected to the inverting input
terminal of the op amp. Show, by sketching the various
circuit configurations, how this basic circuit can be used to
implement the following functions:

@) v, =—(v,+2v,+3v,)

) v, =-(v, +v,+2v,4+2v,)
(©) v, =—(v,+5v,)

(d) v, =-6v,

In each case find the input resistance seen by each of the
signal sources supplying v,, v,, v;, and v,. Suggest at least
two additional summing functions that you can realize with
this circuit. How would you realize a summing coefficient
that is 0.5?

D 2.40 Give acircuit, complete with component values, for a
weighted summer that shifts the dc level of a sine-wave signal
of 3 sin(wt) V from zero to —3 V. Assume that in addition to
the sine-wave signal you have a dc reference voltage of 1.5 V
available. Sketch the output signal waveform.

D 2.41 Use two ideal op amps and resistors to implement the
summing function

v, = v, +2v,-3v,-5v,

D 2.42 In an instrumentation system, there is a need to
take the difference between two signals, one of v, =
2sin(2w x 607) + 0.01sin(27r x 1000¢) volts and another
of v, = 2sin(2w x 60¢) — 0.01sin(2w x 1000¢) volts. Draw
a circuit that finds the required difference using two op amps
and mainly 100-kS2 resistors. Since it is desirable to amplify
the 1000-Hz component in the process, arrange to provide an
overall gain of 100 as well. The op amps available are ideal
except that their output voltage swing is limited to £10 V.

#2.43 Figure P2.43 shows a circuit for a digital-to-analog
converter (DAC). The circuit accepts a 4-bit input binary word
aa,a,a,, where a,, a,, a,, and a, take the values of 0 or 1, and
it provides an analog output voltage v, proportional to the
value of the digital input. Each of the bits of the input word
controls the correspondingly numbered switch. For instance,
if a, is O then switch S, connects the 20-k<2 resistor to ground,
while if a, is 1 then S, connects the 20-k€2 resistor to the +5-V

IEIW = Multisim/PSpice; * = difficult problem; ** = more difficult; ***

power supply. Show that v,, is given by
Rf 0 1 2 3
Wy = —E[Z a,+2a,+2a,+2a,]

where R, is in kilohms. Find the value of R, so that v, ranges
from 0 to —12 volts.

+5V

é 583 10 kQ

n

o—>
IS
o
=
=
1|
+

”“?

j’_ So

Figure P2.43

Section 2.3: The Noninverting
Configuration

D 2.44 Given an ideal op amp to implement designs for the
following closed-loop gains, what values of resistors (R,
R,) should be used? Where possible, use at least one 10-k2
resistor as the smallest resistor in your design.

(@) +1 VIV
(b) +2V/V

©) +21 VIV
(d) +100 V/V

D 2.45 Design a circuit based on the topology of the
noninverting amplifier to obtain a gain of 4+1.5 V/V, using
only 10-k€2 resistors. Note that there are two possibilities.
Which of these can be easily converted to have a gain of
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either +1.0 V/V or +2.0 V/V simply by short-circuiting a
single resistor in each case?

D 2.46 Figure P2.46 shows a circuit for an analog voltmeter
of very high input resistance that uses an inexpensive
moving-coil meter. The voltmeter measures the voltage V
applied between the op amp’s positive-input terminal and
ground. Assuming that the moving coil produces full-scale
deflection when the current passing through it is 100 pA,
find the value of R such that a full-scale reading is obtained
when V is 410 V. Does the meter resistance shown affect the
voltmeter calibration?

[‘ Moving-coil meter

A v

Figure P2.46

D #2.47 (a) Use superposition to show that the output of the
circuit in Fig. P2.47 is given by

R R R
Yo = |:7fv/v1 + —‘va2+~-~+ ivml:|

RNI RNZ RNn
RT R R R
+[1+—f][—”v + -t +~'+*”vn}
RN RPl " sz " R,,,, "
where Ry =Ry, | Ry, || -+ || Ry,, and
R, =R, ”RPZ [ oo ”RPn ”RPO

(b) Design a circuit to obtain
v, =—4vy, + v, +3vp,

The smallest resistor used should be 10 k€2.
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O vp

Figure P2.47

D *2.48 Design a circuit, using one ideal op amp, whose
output is v, = v;; +2v;, —9v,, +4wv,,. (Hint: Use a structure
similar to that shown in general form in Fig. P2.47.)

2.49 Derive an expression for the voltage gain, v,/v,, of the
circuit in Fig. P2.49.

R,

A¢VAV
=

Figure P2.49

2.50 For the circuit in Fig. P2.50, use superposition to find
v, in terms of the input voltages v, and v,. Assume an ideal
op amp. For

v, = 10sin(2w x 60¢) — 0.1sin(27 x 1000¢), volts
v, = 10sin(2 x 60¢) 4 0.1sin(2mw x 1000¢), volts

find ,.

HIN = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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10R
——MW—
R
v O— MW -
R —O 7
U +
10R
Figure P2.50

D 2.51 The circuit shown in Fig. P2.51 utilizes a 10-k2
potentiometer to realize an adjustable-gain amplifier. Derive
an expression for the gain as a function of the potentiometer
setting x. Assume the op amp to be ideal. What is the range
of gains obtained? Show how to add a fixed resistor so that
the gain range can be 1 to 11 V/V. What should the resistor
value be?

10-kQ pot

Figure P2.51

D 2.52 Given the availability of resistors of value 1 k2
and 10 k€2 only, design a circuit based on the noninverting
configuration to realize a gain of +10 V/V. What is the input
resistance of your amplifier?

2.53 It is required to connect a 10-V source with a source
resistance of 1 M2 to a 1-k€2 load. Find the voltage that will
appear across the load if:

(a) The source is connected directly to the load.
(b) A unity-gain op-amp buffer is inserted between the source
and the load.

IEIW = Multisim/PSpice; * = difficult problem; ** = more difficult; ***

In each case find the load current and the current supplied
by the source. Where does the load current come from in
case (b)?

2.54 Derive an expression for the gain of the voltage follower
of Fig. 2.14, assuming the op amp to be ideal except for having
a finite gain A. Calculate the value of the closed-loop gain for
A =1000, 100, and 10. In each case find the percentage error
in gain magnitude from the nominal value of unity.

2.55 Complete the following table for feedback amplifiers
created using one ideal op amp. Note that R, signifies input
resistance and R, and R, are feedback-network resistors as
labeled in the inverting and noninverting configurations.

Case Gain R;, R4 R,
a —-10 V/V 10 k2
b -1 VIV 100 k2
c -2 VIV 200 k2
d +1V/V 00
® +2 VIV 100 k2
f +11 VIV 100 k2
g —0.5 VIV 20 k2

D 2.56 A noninverting op-amp circuit with nominal gain of
10 V/V uses an op amp with open-loop gain of 100 V/V
and a lowest-value resistor of 10k€2. What closed-loop
gain actually results? With what value resistor can which
resistor be shunted to achieve the nominal gain? If in the
manufacturing process, an op amp of gain 200 V/V were
used, what closed-loop gain would result in each case (the
uncompensated one, and the compensated one)?

2.57 Use Eq. (2.11) to show that if the reduction in the
closed-loop gain G from the nominal value G, = 14 R,/R, is
to be kept less than x% of G,, then the open-loop gain of the
op amp must exceed G, by at least a factor F' = (100/x) — 1 ~
100/x. Find the required F for x =0.01, 0.1, 1, and 10. Utilize
these results to find for each value of x the minimum required
open-loop gain to obtain closed-loop gains of 1, 10, 107, 10°,
and 10* V/V.

2.58 For each of the following combinations of op-amp
open-loop gain A and nominal closed-loop gain G,,, calculate
the actual closed-loop gain G that is achieved. Also, calculate
the percentage by which |G| falls short of the nominal gain
magnitude |G|

= very challenging; D = design problem



Case G, (V/V) A (V/IV)
a —1 10
b +1 10
© —1 100
d +10 10
e —10 100
f —10 1000
g +1 2

2.59 Figure P2.59 shows a circuit that provides an output
voltage v, whose value can be varied by turning the wiper of
the 100-k€2 potentiometer. Find the range over which v,, can
be varied. If the potentiometer is a “20-turn” device, find the
change in v,, corresponding to each turn of the pot.

+15V

25 kQ

100-kQ)
pot

25 kQ

Figure P2.59

Section 2.4: Difference Amplifiers

2.60 Find the voltage gain v,/v,, for the difference amplifier
of Fig. 2.16 for the case R, =R, =5kQ and R, = R, =
100 k2. What is the differential input resistance R,,? If the
two key resistance ratios (R,/R,) and (R,/R,) are different
from each other by 1%, what do you expect the common-mode
to be? Also, find the CMRR in this case. Neglect the
effect of the ratio mismatch on the value of A,,.

gain A

cm

D 2.61 Using the difference amplifier configuration of
Fig. 2.16 and assuming an ideal op amp, design the circuit
to provide the following differential gains. In each case, the
differential input resistance should be 20 k<.
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(@ 1V/V
(b) 5V/V

(¢) 100 V/V
(d) 0.5V/V

2.62 For the circuit shown in Fig. P2.62, express v, as a
function of v, and v,. What is the input resistance seen by v,
alone? By v, alone? By a source connected between the two
input terminals? By a source connected to both input terminals

simultaneously?
R R
U
—O
_+_
Yo
(%) n
R R =
Figure P2.62

2.63 Consider the difference amplifier of Fig. 2.16 with
the two input terminals connected together to an input
common-mode signal source. For R,/R, = R,/R,, show that
the input common-mode resistance is (R; +R,) || (R, +R,).

2.64 Consider the circuit of Fig. 2.16, and let each of the
v, and v,, signal sources have a series resistance R . What
condition must apply in addition to the condition in Eq. (2.15)
in order for the amplifier to function as an ideal difference
amplifier?

*2.65 For the difference amplifier shown in Fig. P2.62, let
all the resistors be 10 k€2 = x%. Find an expression for the
worst-case common-mode gain that results. Evaluate this for
x=0.1, 1, and 5. Also, evaluate the resulting CMRR in each
case. Neglect the effect of resistor tolerances on A,,.

2.66 For the difference amplifier of Fig. 2.16, show that if
each resistor has a tolerance of +100€% (i.e., for, say, a
5% resistor, € = 0.05) then the worst-case CMRR is given
approximately by

K+1
CMRR >~ 20log| ——
4e
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where K is the nominal (ideal) value of the ratios (R,/R))
and (R,/R;). Calculate the value of worst-case CMRR for
an amplifier designed to have a differential gain of ideally
100 V/V, assuming that the op amp is ideal and that 1%
resistors are used. What resistor tolerance is needed if a
CMRR of 80 dB is required?

D #2.67 Design the difference amplifier circuit of Fig. 2.16
to realize a differential gain of 1000, a differential input
resistance of 2 k€2, and a minimum CMRR of 88 dB. Assume
the op amp to be ideal. Specify both the resistor values and
their required tolerance (e.g., better than x%).

#2.68 (a) Find A, and A_, for the difference amplifier
circuit shown in Fig. P2.68.

(b) If the op amp is specified to operate properly as long
as the common-mode voltage at its positive and negative
inputs falls in the range £2.5 V, what is the corresponding
limitation on the range of the input common-mode signal v, ,?
(This is known as the common-mode range of the differential
amplifier.)

(c) The circuit is modified by connecting a 10-k€2 resistor
between node A and ground, and another 10-k2 resistor
between node B and ground. What will now be the values
of A,, A,,, and the input common-mode range?

cm?

100 kQ)
——MW—

100 k

U 0—AMWW —
= —O0 Up

Un +

100k |B

100 kQ

Figure P2.68

D #2.69 To obtain a high-gain, high-input-resistance differ-
ence amplifier, the circuit in Fig. P2.69 employs positive
feedback, in addition to the negative feedback provided by the
resistor R connected from the output to the negative input of
the op amp. Specifically, a voltage divider (Rs, R) connected
across the output feeds a fraction g of the output, that is, a
voltage Bv,, back to the positive-input terminal of the op
amp through a resistor R. Assume that R, and R, are much
smaller than R so that the current through R is much lower
than the current in the voltage divider, with the result that

B >~ R|(Rs + R,). Show that the differential gain is given by

1
Adzﬁzli
o7 - B

(Hint: Use superposition.)

Design the circuit to obtain a differential gain of 10 V/V and
differential input resistance of 2 M. Select values for R, R;,
and R, such that (R; + R,) < R/100.

Figure P2.69

#2.70 Figure P2.70 shows a modified version of the differ-
ence amplifier. The modified circuit includes a resistor R,
which can be used to vary the gain. Show that the differential
voltage gain is given by

E = _2& |:1 + &]
o7 R, Rg

(Hint: The virtual short circuit at the op-amp input causes the
current through the R, resistors to be v,,/2R,).

R, Ry Ry

Figure P2.70
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D #*2.71 The circuit shown in Fig. P2.71 is a representation
of a versatile, commercially available IC, the INA105, manu-
factured by Burr-Brown and known as a differential amplifier
module. It consists of an op amp and precision, laser-trimmed,
metal-filmresistors. The circuit can be configured for a variety
of applications by the appropriate connection of terminals A,
B, C, D, and O.

(a) Show how the circuit can be used to implement a
difference amplifier of unity gain.
(b) Show how the circuit can be used to implement
single-ended amplifiers with gains:
i) —1V/V
(i) +1 V/V
(iii) +2 V/V
@iv) +1/2 VIV

Avoid leaving a terminal open-circuited, for such a terminal
may act as an “antenna,” picking up interference and noise
through capacitive coupling. Rather, find a convenient node to
connect such a terminal in a redundant way. When more than
one circuit implementation is possible, comment on the rel-
ative merits of each, taking into account such considerations
as dependence on component matching and input resistance.

25 kQ) 25 kQ)
Ao—MAN—r—MWANV—0C

Bo—MWN——MYWA—0D
25 kQ) 25 kQ)

Figure P2.71

2.72 Consider the instrumentation amplifier of Fig. 2.20(b)
with a common-mode input voltage of +3 V (dc) and a
differential input signal of 100-mV peak sine wave. Let
2R, =2kQ, R, =50k, R, = R, = 10 k2. Find the voltage
at every node in the circuit.

2.73 (a) Consider the instrumentation amplifier circuit of
Fig. 2.20(a). If the op amps are ideal except that their outputs
saturate at =12 V, in the manner shown in Fig. 1.14, find the
maximum allowed input common-mode signal for the case
R, =1k and R, = 100 k2.

(b) Repeat (a) for the circuit in Fig. 2.20(b), and comment on
the difference between the two circuits.
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2.74 (a) Expressing v,, and v,, in terms of differential and
common-mode components, find v,, and v,, in the circuit
in Fig. 2.20(a) and hence find their differential component
Vg, — 0, and their common-mode component 1 (v, + v,,).
Now find the differential gain and the common-mode gain of
the first stage of this instrumentation amplifier and hence the
CMRR.

(b) Repeat for the circuit in Fig. 2.20(b), and comment on the
difference between the two circuits.

#2.75 For an instrumentation amplifier of the type shown
in Fig. 2.20(b), a designer proposes to make R, = R; =
R, = 100k, and 2R, = 10kS2. For ideal components,
what difference-mode gain, common-mode gain, and CMRR
result? Reevaluate the worst-case values for these for the
situation in which all resistors are specified as 1% units.
Repeat the latter analysis for the case in which 2R, is reduced
to 1 k2. What do you conclude about the effect of the gain
of the first stage on CMRR? (Hint: Eq. (2.19) can be used to
evaluate A, of the second stage.)

D 2.76 Design the instrumentation-amplifier circuit of
Fig. 2.20(b) to realize a differential gain, variable in the range
2 to 100, utilizing a 100-kS2 pot as variable resistor.

B #2.77 The circuit shown in Fig. P2.77 is intended to
supply a voltage to floating loads (those for which both
terminals are ungrounded) while making greatest possible use
of the available power supply.

20 kQ

Ao——e 30 k() Vo

10 kQ
AN =

Uy

10 kO
- E—w»——+

Figure P2.77
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(a) Assuming ideal op amps, sketch the voltage waveforms at
nodes B and C for a 1-V peak-to-peak sine wave applied
at A. Also sketch v,,.

(b) What is the voltage gain v,/v,?

(c) Assuming that the op amps operate from +15-V power
supplies and that their output saturates at £14 V (in
the manner shown in Fig. 1.14), what is the largest
sine-wave output that can be accommodated? Specify
both its peak-to-peak and rms values.

#2.78 The two circuits in Fig. P2.78 are intended to function
as voltage-to-current converters; that is, they supply the
load impedance Z, with a current proportional to v, and
independent of the value of Z;. Show that this is indeed the
case, and find for each circuit i,, as a function of v,. Comment
on the differences between the two circuits.

Section 2.5: Integrators and Differentiators

2.79 A Miller integrator incorporates an ideal op amp, a
resistor R of 10 k€2, and a capacitor C of 1 nF. A sine-wave
signal is applied to its input.

(a) Atwhat frequency (in Hz) are the input and output signals
equal in amplitude?

(b) At that frequency, how does the phase of the output sine
wave relate to that of the input?

o— A \
B +
Z v, /
31—
- -
" lo
U R R, R,
<

(a)

Figure P2.78

——MA——

(c) If the frequency is lowered by a factor of 10 from that
found in (a), by what factor does the output voltage
change, and in what direction (smaller or larger)?

(d) What is the phase relation between the input and output
in situation (c)?

D 2.80 Design a Miller integrator with a time constant of 1 s
and an input resistance of 100 k2. A dc voltage of —1 voltis
applied at the input at time 0, at which moment v, = —10 V.
How long does it take the output to reach O V? +10 V?

2.871 An op-amp-based inverting integrator is measured at
10 kHzto have a voltage gain of —100 V/V. At what frequency
is its gain reduced to —1 V/V? What is the integrator time
constant?

D 2.82 Design a Miller integrator that has a unity-gain
frequency of 10 krad/s and an input resistance of 100 k€.
Sketch the output you would expect for the situation in which,
with output initially at 0 V, a 2-V, 100-us pulse is applied to
the input. Characterize the output that results when a sine
wave 2 sin 10* is applied to the input.

D 2.83 Design a Miller integrator whose input resistance
is 10 k2 and unity-gain frequency is 100 kHz. What
components are needed? For long-term stability, a feedback
resistor is introduced across the capacitor to limit the dc gain

o—'ws,—«—'wv—«ﬁ R

ZL V'()

(b)

EIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem



to 40 dB. What is its value? What is the associated lower
3-dB frequency? Sketch and label the output that results with
a 10-ps, 1-V positive-input pulse (initially at 0 V) with (a)
no dc stabilization (but with the output initially at 0 V) and
(b) the feedback resistor connected.

#2.84 A Miller integrator whose input and output voltages
are initially zero and whose time constant is 1 ms is driven by
the signal shown in Fig. P2.84. Sketch and label the output
waveform that results. Indicate what happens if the input
levels are +2 V, with the time constant the same (1 ms) and
with the time constant raised to 2 ms.

Yy (V)ﬂ\

+1

Figure P2.84

2.85 Consider a Miller integrator having a time constant of
1 ms and an output that is initially zero, when fed with a string
of pulses of 10-ps duration and 1-V amplitude rising from
0V (see Fig. P2.85). Sketch and label the output waveform
resulting. How many pulses are required for an output voltage
change of 1 V?

u (V)A
10 ps
) —> |=—
o000
0
t
Figure P2.85

D 2.86 Figure P2.86 shows a circuit that performs a low-pass
STC function. Such a circuit is known as a first-order,
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low-pass active filter. Derive the transfer function and
show that the dc gain is (—R,/R,) and the 3-dB frequency
w, = 1/CR,. Design the circuit to obtain an input resistance of
10 k€2, a dc gain of 40 dB, and a 3-dB frequency of 1 kHz. At
what frequency does the magnitude of the transfer function
reduce to unity?

aQ

Figure P2.86

#2.87 Show that a Miller integrator implemented with an
op amp with open-loop gain A, has a low-pass STC transfer
function. What is the pole frequency of the STC function?
How does this compare with the pole frequency of the ideal
integrator? If an ideal Miller integrator is fed with a —1-V
pulse signal with a width 7 = CR, what will the output voltage
be at t = 7?7 Assume that at t = 0,v, = 0. Repeat for an
integrator with an op amp having A, = 1000.

2.88 A differentiator utilizes an ideal op amp, a 10-kS2
resistor, and a 1-nF capacitor. What is the frequency f; (in Hz)
at which its input and output sine-wave signals have equal
magnitude? What is the output signal for a 1-V peak-to-peak
sine-wave input with frequency equal to 10f,?

2.89 An op-amp differentiator with 1-ms time constant is
driven by the rate-controlled step shown in Fig. P2.89.
Assuming v, to be zero initially, sketch and label its
waveform.

| Y

I
I
| ”~

0 0.2 ms

~

Figure P2.89
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2.90 An op-amp differentiator, employing the circuit shown
in Fig. 2.27(a), has R = 20k and C = 0.1 pF. When a
triangle wave of +1-V peak amplitude at 1 kHz is applied to
the input, what form of output results? What is its frequency?
What is its peak amplitude? What is its average value? What
value of R is needed to cause the output to have a 12-V peak
amplitude?

2.91 Use an ideal op amp to design a differentiation circuit
for which the time constantis 10 s using a 10-nF capacitor.
What are the gains and phase shifts found for this circuit
at one-tenth and 10 times the unity-gain frequency? A
series input resistor is added to limit the gain magnitude at
high frequencies to 100 V/V. What is the associated 3-dB
frequency? What gain and phase shift result at 10 times the
unity-gain frequency?

D 2.92 Figure P2.92 shows a circuit that performs the
high-pass, single-time-constant function. Such a circuit is
known as a first-order high-pass active filter. Derive the
transfer function and show that the high-frequency gain is
(=R,/R,) and the 3-dB frequency w, = 1/CR,. Design the
circuit to obtain a high-frequency input resistance of 1 k<2, a
high-frequency gain of 40 dB, and a 3-dB frequency of 2 kHz.
At what frequency does the magnitude of the transfer function
reduce to unity?

Figure P2.92

D #*¥2.93 Derive the transfer function of the circuit in
Fig. P2.93 (for anideal op amp) and show that it can be written
in the form

v, —R,/R,
V, [+ (@/jo)lll+jwo,)]

=

where w, = 1/C|R, and w, = 1/C,R,. Assuming that the circuit
is designed such that w, > w,, find approximate expressions

IEIW = Multisim/PSpice; * = difficult problem; ** = more difficult; ***

for the transfer function in the following frequency
regions:

(a) o Lo,
b)) v, KoK o,
©) 0> o,

o

Figure P2.93

Use these approximations to sketch a Bode plot for the
magnitude response. Observe that the circuit performs as
an amplifier whose gain rolls off at the low-frequency
end in the manner of a high-pass STC network, and at
the high-frequency end in the manner of a low-pass STC
network. Design the circuit to provide a gain of 40 dB in
the “middle-frequency range,” a low-frequency 3-dB point at
200 Hz, a high-frequency 3-dB point at 200 kHz, and an input
resistance (at w > w,) of 2 k2.

Section 2.6: DC Imperfections

2.94 An op amp wired in the inverting configuration with
the input grounded, having R, = 100k2 and R, = 2 k€2,
has an output dc voltage of —0.2 V. If the input bias
current is known to be very small, find the input offset
voltage.

2.95 A noninverting amplifier with a gain of 100 uses an op
amp having an input offset voltage of £2 mV. Find the output
when the input is 0.01 sin wt, volts.

2.96 A noninverting amplifier with a closed-loop gain of
1000 is designed using an op amp having an input offset
voltage of 3 mV and output saturation levels of 12 V. What
is the maximum amplitude of the sine wave that can be applied
at the input without the output clipping? If the amplifier is

= very challenging; D = design problem



capacitively coupled in the manner indicated in Fig. 2.36,
what would the maximum possible amplitude be?

2.97 An op amp connected in a closed-loop inverting
configuration having a gain of 1000 V/V and using relatively
small-valued resistors is measured with input grounded to
have a dc output voltage of —1.8 V. What is its input offset
voltage? Prepare an offset-voltage-source sketch resembling
that in Fig. 2.28. Be careful of polarities.

2.98 A particular inverting amplifier with nominal gain of
—100 V/V uses an imperfect op amp in conjunction with
100-k€2 and 10-MS2 resistors. The output voltage is found
to be +5.3 V when measured with the input open and +5 V
with the input grounded.

(a) What is the bias current of this amplifier? In what
direction does it flow?

(b) Estimate the value of the input offset voltage.

(c) A 10-MQresistor is connected between the positive-input
terminal and ground. With the input left floating (discon-
nected), the output dc voltage is measured to be —0.6 V.
Estimate the input offset current.

D #2.99 A noninverting amplifier with a gain of +10 V/V
using 100 k€2 as the feedback resistor operates from a 5-k<2
source. For an amplifier offset voltage of 0 mV, but with a bias
current of 2 A and an offset current of 0.2 LA, what range of
outputs would you expect? Indicate where you would add an
additional resistor to compensate for the bias currents. What
does the range of possible outputs then become? A designer
wishes to use this amplifier with a 15-k€2 source. In order
to compensate for the bias current in this case, what resistor
would you use? And where?

D 2.100 The circuit of Fig. 2.36 is used to create an
ac-coupled noninverting amplifier with a gain of 100 V/V
using resistors no larger than 100 k2. What values of R, R,,
and R, should be used? For a break frequency due to C, at
100 Hz, and that due to C, at 10 Hz, what values of C, and
C, are needed?

#2.101 Consider the difference amplifier circuit in Fig. 2.16.
LetR, =R, =10k and R, =R, = 1 MQ. If the op amp has
Vos=5mV, I, =1pA,and [,; =0.2 pA, find the worst-case
(largest) dc offset voltage at the output.

#2.102 The circuit shown in Fig. P2.102 uses an op amp
having a £3-mV offset. What is its output offset voltage?
What does the output offset become with the input ac coupled
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through a capacitor C? If, instead, a large capacitor is placed
in series with a 1-kS2 resistor, what does the output offset
become?

Figure P2.102

2.103 Using offset-nulling facilities provided for the op amp,
aclosed-loop amplifier with gain of +1000 is adjusted at 25°C
to produce zero output with the input grounded. If the input
offset-voltage drift is specified to be 20 |LV/°C, what output
would you expect at 0°C and at 100°C? While nothing can be
said separately about the polarity of the output offset at either
0 or 75°C, what would you expect their relative polarities to
be?

2.104 An op amp is connected in a closed loop with gain of
4100 utilizing a feedback resistor of 1 M.

(a) If the input bias current is 200 nA, what output voltage
results with the input grounded?

(b) If the input offset voltage is =2 mV and the input bias
current as in (a), what is the largest possible output that
can be observed with the input grounded?

(c) If bias-current compensation is used, what is the value of
the required resistor? If the offset current is no more than
one-tenth the bias current, what is the resulting output
offset voltage (due to offset current alone)?

(d) With bias-current compensation as in (c) in place, what
is the largest dc voltage at the output due to the combined
effect of offset voltage and offset current?

#2.105 An op amp intended for operation with a closed-loop
gain of =100 V/V uses resistors of 10 k€2 and 1 MQ with a
bias-current-compensation resistor R,. What should the value
of R, be? With input grounded, the output offset voltage
is found to be +0.30 V. Estimate the input offset current
assuming zero input offset voltage. If the input offset voltage

HIN = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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can be as large as 1 mV of unknown polarity, what range of
offset current is possible?

2.106 A Miller integrator with R = 10k2 and C = 10 nF
is implemented by using an op amp with V,, =2mV, [, =
0.1 pA, and 7,,; =20 nA. To provide a finite dc gain, a 1-M2
resistor is connected across the capacitor.

(a) To compensate for the effect of /,, a resistor is connected
in series with the positive-input terminal of the op amp.
What should its value be?

(b) With the resistor of (a) in place, find the worst-case
dc output voltage of the integrator when the input is
grounded.

Section 2.7: Effect of Finite Open-Loop Gain
and Bandwidth on Circuit Performance

2.107 The data in the following table apply to internally
compensated op amps. Fill in the blank entries.

Ao f, (H2) f, (H2)
10° 10?
10° 10°
10° 10®
10" 10°
2% 10° 10

2.108 A measurement of the open-loop gain of an internally
compensated op amp at very low frequencies shows it to be
98 dB; at 100 kHz, this shows it is 40 dB. Estimate values for

Ay, f,. and f,.

2.109 Measurements of the open-loop gain of a compensated
op amp intended for high-frequency operation indicate that the
gain is 4 x 10 at 100 kHz and 20 x 10° at 10 kHz. Estimate
its 3-dB frequencyi, its unity-gain frequency, and its dc gain.

2.110 Measurements made on the internally compensated
amplifiers listed below provide the dc gain and the frequency
at which the gain has dropped by 20 dB. For each, what are
the 3 dB and unity-gain frequencies?

(a) 2 x 10° V/V and 5 x 10* Hz
(b) 20 x 10° V/V and 10 Hz

(c) 1800 V/V and 0.1 MHz

(d) 100 V/V and 0.1 GHz

(e) 25 V/mV and 250 kHz

2.111 Aninverting amplifier with nominal gain of —50 V/V
employs an op amp having a dc gain of 10* and a unity-gain
frequency of 10° Hz. What is the 3-dB frequency f,; of the
closed-loop amplifier? Whatisits gainat 0.1 f;;; and at 10 £, 5 ?

2.112 A particular op amp, characterized by a
gain—bandwidth product of 20 MHz, is operated with a
closed-loop gain of +100 V/V. What 3-dB bandwidth results?
At what frequency does the closed-loop amplifier exhibit a
—6° phase shift? A —84° phase shift?

2.113 Find the f, required for internally compensated op
amps to be used in the implementation of closed-loop
amplifiers with the following nominal dc gains and 3-dB
bandwidths:

(a) —50 V/V; 100 kHz
(b) +50 V/V; 100 kHz
(¢) +2 V/V;5 MHz

(d) —2V/V;5MHz

(e) —1000 V/V; 10 kHz
(f) +1 V/V; 1 MHz
(g) —1V/V;1MHz

2.114 A noninverting op-amp circuit with a gain of 96 V/V
is found to have a 3-dB frequency of 8 kHz. For a particular
system application, a bandwidth of 32 kHz is required. What
is the highest gain available under these conditions?

2.115 Consider a unity-gain follower utilizing an internally
compensated op amp with f, = 2 MHz. What is the 3-dB
frequency of the follower? At what frequency is the gain of
the follower 1% below its low-frequency magnitude? If the
input to the follower is a 1-V step, find the 10% to 90% rise
time of the output voltage. (Note: The step response of STC
low-pass networks is discussed in Appendix E. Specifically,
note that the 10%-90% rise time of a low-pass STC circuit
with a time constant t is 2.27.)

D #*2.116 It is required to design a noninverting amplifier
with a dc gain of 10. When a step voltage of 100 mV is applied
at the input, it is required that the output be within 1% of its
final value of 1 V in at most 200 ns. What must the f, of the op
amp be? (Note: The step response of STC low-pass networks
is discussed in Appendix E.)

D #2.117 This problem illustrates the use of cascaded
closed-loop amplifiers to obtain an overall bandwidth greater
than can be achieved using a single-stage amplifier with the
same overall gain.

EIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem



(a) Show that cascading two identical amplifier stages, each
having a low-pass STC frequency response with a 3-dB
frequency f;, results in an overall amplifier with a 3-dB
frequency given by

S = \/5_ 11,

(b) Itisrequired to design a noninverting amplifier with a dc
gain of 40 dB utilizing a single internally compensated
op amp with f, =2 MHz. What is the 3-dB frequency
obtained?

(c) Redesign the amplifier of (b) by cascading two identical
noninverting amplifiers each with a dc gain of 20 dB.
What is the 3-dB frequency of the overall amplifier?
Compare this to the value obtained in (b) above.

D #¥2.118 Adesigner, wanting to achieve a stable gain of 100
V/V at 5 MHz, considers her choice of amplifier topologies.
Whatunity-gainfrequency wouldasingle operational amplifier
require to satisfy her need? Unfortunately, the best available
amplifier has an f, of 40 MHz. How many such amplifiers
connected in a cascade of identical noninverting stages would
she need to achieve her goal? What is the 3-dB frequency of
each stage she can use? What is the overall 3-dB frequency?

2.119 Consider the use of an op amp with a unity-gain
frequency f, in the realization of:

(a) Aninverting amplifier with dc gain of magnitude K.
(b) A noninverting amplifier with a dc gain of K.

In each case find the 3-dB frequency and the gain—bandwidth
product (GBP = |Gainl x f,;;). Comment on the results.

#2.120 Consider aninverting summer with two inputs V, and
V, and with V, = —(V,4 3V,). Find the 3-dB frequency of
each of the gain functions V,/V, and V,/V, in terms of the op
amp f,. (Hint: In each case, the other input to the summer can
be set to zero—an application of superposition.)

Section 2.8: Large-Signal Operation
of Op Amps

2.121 A particular op amp using £15-V supplies operates
linearly for outputs in the range —14 V to +14 V. If used in
an inverting amplifier configuration of gain —100, what is the
rms value of the largest possible sine wave that can be applied
at the input without output clipping?

2.122 Consider an op amp connected in the inverting
configuration to realize a closed-loop gain of —100 V/V
utilizing resistors of 1 k€2 and 100 k2. A load resistance R,
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is connected from the output to ground, and a low-frequency
sine-wave signal of peak amplitude V, is applied to the input.
Let the op amp be ideal except that its output voltage saturates
at£10V and its output current is limited to the range 20 mA.

(a) For R, = 1k€, what is the maximum possible value of
V, while an undistorted output sinusoid is obtained?

(b) Repeat (a) for R, =200 <.

(c) Ifitis desired to obtain an output sinusoid of 10-V peak
amplitude, what minimum value of R, is allowed?

2.123 An op amp having a slew rate of 10 V/us is to be used
in the unity-gain follower configuration, with input pulses
that rise from 0 to 2 V. What is the shortest pulse that can be
used while ensuring full-amplitude output? For such a pulse,
describe the output resulting.

2.124 For operation with 10-V output pulses with the
requirement that the sum of the rise and fall times represent
only 20% of the pulse width (at half-amplitude), what is the
slew-rate requirement for an op amp to handle pulses 2 s
wide? (Note: The rise and fall times of a pulse signal are
usually measured between the 10%- and 90%-height points.)

2.125 What is the highest frequency of a triangle wave of
10-V peak-to-peak amplitude that can be reproduced by an
op amp whose slew rate is 20 V/us? For a sine wave of the
same frequency, what is the maximum amplitude of output
signal that remains undistorted?

2.126 For an amplifier having a slew rate of 40 V/us, what
is the highest frequency at which a 20-V peak-to-peak sine
wave can be produced at the output?

D #*2.127 In designing with op amps one has to check the
limitations on the voltage and frequency ranges of operation
of the closed-loop amplifier, imposed by the op-amp finite
bandwidth (f)), slew rate (SR), and output saturation (V).
This problem illustrates the point by considering the use of an
op amp with f, = 20 MHz, SR=10 V/ps,and V, =10V
in the design of a noninverting amplifier with a nominal gain
of 10. Assume a sine-wave input with peak amplitude V..

(a) If V,=0.5V, what is the maximum frequency before the
output distorts?

(b) If f =200 kHz, what is the maximum value of V, before
the output distorts?

(c) If V. =50mV, what is the useful frequency range of
operation?

(d) If f =50 kHz, what is the useful input voltage range?
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IN THIS CHAPTER YOU WILL LEARN

1. The basic properties of semiconductors and in particular silicon, which is the material
used to make most of today’s electronic circuits.

2. How doping a pure silicon crystal dramatically changes its electrical conductivity,
which is the fundamental idea underlying the use of semiconductors in the
implementation of electronic devices.

3. The two mechanisms by which current flows in semiconductors: drift and diffusion of
charge carriers.

4. The structure and operation of the pn junction; a basic semiconductor structure that
implements the diode and plays a dominant role in transistors.

Introduction

Thus far we have dealt with electronic circuits, and notably amplifiers, as system building
blocks. For instance, in Chapter 2 we learned how to use op amps to design interesting and
useful circuits, taking advantage of the terminal characteristics of the op amp and without
any knowledge of what is inside the op-amp package. Though interesting and motivating, this
approach has its limitations. Indeed, to achieve our goal of preparing the reader to become a
proficient circuit designer, we have to go beyond this black-box or system-level abstraction
and learn about the basic devices from which electronic circuits are assembled, namely,
diodes (Chapter4) and transistors (Chapters 5 and 6). These solid-state devices are made
using semiconductor materials, predominantly silicon.

In this chapter, we briefly introduce the properties and physics of semiconductors.
The objective is to provide a basis for understanding the physical operation of diodes and
transistors in order to enable their effective use in the design of circuits. Although many of the
concepts studied in this chapter apply to semiconductor materials in general, our treatment is
heavily biased toward silicon, simply because it is the material used in the vast majority of
microelectronic circuits. To complement the material presented here, Appendix A provides
a description of the integrated-circuit fabrication process. As discussed in Appendix A,
whether our circuit consists of a single transistor or is an integrated circuit containing
more than 2 billion transistors, it is fabricated in a single silicon crystal, which gives rise
to the name monolithic circuit. This chapter therefore begins with a study of the crystal
structure of semiconductors and introduces the two types of charge carriers available for
current conduction: electrons and holes. The most significant property of semiconductors
is that their conductivity can be varied over a very wide range through the introduction of
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controlled amounts of impurity atoms into the semiconductor crystal in a process called
doping. Doped semiconductors are discussed in Section 3.2. This is followed by the study in
Section 3.3 of the two mechanisms for current flow in semiconductors, namely, carrier drift
and carrier diffusion.

Armed with these basic semiconductor concepts, we spend the remainder of the chapter on
the study of an important semiconductor structure: the pn junction. In addition to being essen-
tially a diode, the pn junction is the basic element of the bipolar junction transistor (BJT, Chap-
ter 6) and plays an important role in the operation of field-effect transistors (FETs, Chapter 5).

3.1 Intrinsic Semiconductors

As their name implies, semiconductors are materials whose conductivity lies between that of
conductors, such as copper, and insulators, such as glass. There are two kinds of semiconduc-
tors: single-element semiconductors, such as germanium and silicon, which are in group I'V in
the periodic table; and compound semiconductors, such as gallium-arsenide, which are formed
by combining elements from groups Il and V or groups II and VI. Compound semiconductors
are useful in special electronic circuit applications as well as in applications that involve light,
such as light-emitting diodes (LEDs). Of the two elemental semiconductors, germanium was
used in the fabrication of very early transistors (late 1940s, early 1950s). It was quickly
supplanted, however, with silicon, on which today’s integrated-circuit technology is almost
entirely based. For this reason, we will deal mostly with silicon devices throughout this book."

A silicon atom has four valence electrons, and thus it requires another four to complete its
outermost shell. This is achieved by sharing one of its valence electrons with each of its four
neighboring atoms. Each pair of shared electrons forms a covalent bond. The result is that a
crystal of pure or intrinsic silicon has a regular lattice structure, where the atoms are held in
their position by the covalent bonds. Figure 3.1 shows a two-dimensional representation of
such a structure.

At sufficiently low temperatures, approaching absolute zero (0 K), all the covalent bonds
are intact and no electrons are available to conduct electric current. Thus, at such low
temperatures, the intrinsic silicon crystal behaves as an insulator.

Atroom temperature, sufficient thermal energy exists to break some of the covalent bonds,
a process known as thermal generation. As shown in Fig. 3.2, when a covalent bond is broken,
an electron is freed. The free electron can wander away from its parent atom, and it becomes
available to conduct electric current if an electric field is applied to the crystal. As the electron
leaves its parent atom, it leaves behind a net positive charge, equal to the magnitude of the
electron charge. Thus, an electron from a neighboring atom may be attracted to this positive
charge, and leaves its parent atom. This action fills up the “hole” that existed in the ionized
atom but creates a new hole in the other atom. This process may repeat itself, with the result
that we effectively have a positively charged carrier, or hole, moving through the silicon
crystal structure and being available to conduct electric current. The charge of a hole is equal
in magnitude to the charge of an electron. We can thus see that as temperature increases, more
covalent bonds are broken and electron—hole pairs are generated. The increase in the numbers
of free electrons and holes results in an increase in the conductivity of silicon.

' An exception is the subject of gallium arsenide (GaAs) circuits, which though not covered in this edition
of the book, is studied in some detail in material provided on the text website.
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Valence Covalent
electrons bonds

Silicon atoms

Figure 3.1 Two-dimensional representation of the silicon crystal. The circles represent the inner core of
silicon atoms, with +4 indicating its positive charge of +4¢, which is neutralized by the charge of the four
valence electrons. Observe how the covalent bonds are formed by sharing of the valence electrons. At 0 K, all
bonds are intact and no free electrons are available for current conduction.

Valence Free
electrons electron

Broken
covalent
)
bond Hole
Covalent Silicon atoms
bond

Figure 3.2 Atroom temperature, some of the covalent bonds are broken by thermal generation. Each broken
bond gives rise to a free electron and a hole, both of which become available for current conduction.

Thermal generation results in free electrons and holes in equal numbers and hence equal
concentrations, where concentration refers to the number of charge carriers per unit volume
(cm’). The free electrons and holes move randomly through the silicon crystal structure, and
in the process some electrons may fill some of the holes. This process, called recombination,
results in the disappearance of free electrons and holes. The recombination rate is
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proportional to the number of free electrons and holes, which in turn is determined by
the thermal generation rate. The latter is a strong function of temperature. In thermal
equilibrium, the recombination rate is equal to the generation rate, and one can conclude
that the concentration of free electrons » is equal to the concentration of holes p,

n=p=n, 3.1

. . 3 . ..
where n; denotes the number of free electrons and holes in a unit volume (cm”) of intrinsic
silicon at a given temperature. Results from semiconductor physics gives n; as

ni — BT3/2e—Eg/2kT (32)
where B is a material-dependent parameter that is 7.3 x 10”cm K> for silicon; T is the
temperature in K; E,, a parameter known as the bandgap energy, is 1.12 electron volt (V)
for silicon’; and k is Boltzmann’s constant (8.62 x 107 eV/K). It is interesting to know that
the bandgap energy E, is the minimum energy required to break a covalent bond and thus
generate an electron-hole pair.

Calculate the value of n, for silicon at room temperature (7' 2~ 300 K).

Solution

Substituting the values given above in Eq. (3.2) provides

n = T3 1015(300)3/26—1A12/(2><8.62>< 1073 x300)

= 1.5 x 10" carriers/cm’

Although this number seems large, to place it into context note that silicon has 5 x 10 atoms/cm’. Thus
at room temperature only one in about 5 x 10" atoms is ionized and contributing a free electron and

a hole!

Finally, it is useful for future purposes to express the product of the hole and free-electron
concentration as

2

pn=n; 3.3)

where for silicon at room temperature, n, ~ 1.5 x 10'°/cm’. As will be seen shortly, this
relationship extends to extrinsic or doped silicon as well.

*Note that 1 eV = 1.6 x 10" J.
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LCDs, THE FACE The existence of liquid crystals whose color could be changed by means of an

OF ELECTRONICS: external heat source was first reported in 1888 by an Austrian botanical physiologist.
The LC idea lay dormant until the late 1940s, however. Subsequent developments in
the field of solid-state electronics provided the technology to harness the technique
in display media, with the first LCDs being demonstrated by RCA beginning in
1962. Today, LCDs are an essential component in every mobile device as the
interface to the world of electronics within. At the other end of the scale, large LCDs
are used in flat-panel TVs, and very large LCDs are appearing as “dynamic”
wallpaper in museum display settings.

3.1 Calculate the intrinsic carrier density #, for silicon at 7 = 50 K and 350 K.
Ans. 9.6 x 10 "/cm’; 4.15 x 10" /cm’

3.2 Doped Semiconductors

The intrinsic silicon crystal described above has equal concentrations of free electrons and
holes, generated by thermal generation. These concentrations are far too small for silicon
to conduct appreciable current at room temperature. Also, the carrier concentrations and
hence the conductivity are strong functions of temperature, not a desirable property in an
electronic device. Fortunately, a method was developed to change the carrier concentration
in a semiconductor crystal substantially and in a precisely controlled manner. This process is
known as doping, and the resulting silicon is referred to as doped silicon.

Doping involves introducing impurity atoms into the silicon crystal in sufficient numbers
to substantially increase the concentration of either free electrons or holes but with little or no
change in the crystal properties of silicon. To increase the concentration of free electrons, n,
silicon is doped with an element with a valence of 5, such as phosphorus. The resulting doped
silicon is then said to be of n type. To increase the concentration of holes, p, silicon is doped
with an element having a valence of 3, such as boron, and the resulting doped silicon is said
to be of p type.

Figure 3.3 shows a silicon crystal doped with phosphorus impurity. The dopant
(phosphorus) atoms replace some of the silicon atoms in the crystal structure. Since the
phosphorus atom has five electrons in its outer shell, four of these electrons form covalent
bonds with the neighboring atoms, and the fifth electron becomes a free electron. Thus each
phosphorus atom donates a free electron to the silicon crystal, and the phosphorus impurity is
called a donor. It should be clear, though, that no holes are generated by this process. The net
positive charge associated with the phosphorus atom is a bound charge that does not move
through the crystal.

If the concentration of donor atoms is N,,, where NN, is usually much greater than #n,, the
concentration of free electrons in the n-type silicon will be

n,~N, G4 =<
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Valence Covalent
electrons bonds

Free electron donated
by impurity atom

Pentavalent impurity
atom (donor)

Silicon atoms

Figure 3.3 A silicon crystal doped by a pentavalent element. Each dopant atom donates a free electron and
is thus called a donor. The doped semiconductor becomes 7 type.

where the subscript n denotes n-type silicon. Thus n, is determined by the doping concentration
and not by temperature. This is not the case, however, for the hole concentration. All the holes
in the n-type silicon are those generated by thermal ionization. Their concentration p, can
be found by noting that the relationship in Eq. (3.3) applies equally well for doped silicon,
provided thermal equilibrium is achieved. Thus for n-type silicon

) Py, =n;

Substituting for n, from Eq. (3.4), we obtain for p,

> Dy~ — (3.5

Thus p, will have the same dependence on temperature as that of nf Finally, we note that
in n-type silicon the concentration of free electrons n, will be much larger than that of holes.
Hence electrons are said to be the majority charge carriers and holes the minority charge
carriers in n-type silicon.

To obtain p-type silicon in which holes are the majority charge carriers, a trivalent impurity
such as boron is used. Figure 3.4 shows a silicon crystal doped with boron. Note that the boron
atoms replace some of the silicon atoms in the silicon crystal structure. Since each boron atom
has three electrons in its outer shell, it accepts an electron from a neighboring atom, thus
forming covalent bonds. The result is a hole in the neighboring atom and a bound negative
charge at the acceptor (boron) atom. It follows that each acceptor atom provides a hole. If
the acceptor doping concentration is N,, where N, >> n,, the hole concentration becomes

> P, =N, (3.6)

where the subscript p denotes p-type silicon. Thus, here the majority carriers are holes and
their concentration is determined by N,. The concentration of minority electrons can be found
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Figure 3.4 A silicon crystal doped with boron, a trivalent impurity. Each dopant atom gives rise to a hole,

and the semiconductor becomes p type.

by using the relationship

ppnp = nl
and substituting for p, from Eq. (3.6),
2
n;
no~_t
P NA

37 <

Thus, the concentration of the minority electrons will have the same temperature dependence

as that of n,2

It should be emphasized that a piece of n-type or p-type silicon is electrically neutral; the
charge of the majority free carriers (electrons in the n-type and holes in the p-type silicon) are
neutralized by the bound charges associated with the impurity atoms.

Consider an n-type silicon for which the dopant concentration N, = 10"/cm’. Find the electron and

hole concentrations at 7 = 300 K.

Solution

The concentration of the majority electrons is

n,~N,=10"/cm’
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Example 3.2 continued

The concentration of the minority holes is

In Example 3.1 we found that at T =300 K, n, = 1.5 x 10"’/cm’. Thus,

(1.5 x 10“’)2

1017
=225 x 10’ /cm’

Pn=

Observe that n, > n; and that n, is vastly higher than p,.

3.2 For the situation in Example 3.2, find the electron and hole concentrations at 350 K. You may use the
value of n; at T =350 K found in Exercise 3.1.
Ans. n, =10"/cm’, p, = 1.72 x 10°/cm’

3.3 For a silicon crystal doped with boron, what must N, be if at 7 = 300 K the electron concentration
drops below the intrinsic level by a factor of 10°?
Ans. N, = 1.5 x 10"°/cm’

3.3 Current Flow in Semiconductors

There are two distinctly different mechanisms for the movement of charge carriers and hence
for current flow in semiconductors: drift and diffusion.

3.3.1 Drift Current

When an electrical field E is established in a semiconductor crystal, holes are accelerated in
the direction of E, and free electrons are accelerated in the direction opposite to that of E. This
situation is illustrated in Fig. 3.5. The holes acquire a velocity v, 4 given by

> Vit = M E (3.8)

where 1, is a constant called the hole mobility: It represents the degree of ease by which
holes move through the silicon crystal in response to the electrical field E. Since velocity
has the units of centimeters per second and E has the units of volts per centimeter, we see
from Eq. (3.8) that the mobility x, must have the units of centimeters squared per volt-second

(cm’/V -s). For intrinsic silicon m, =480 cem’/V -s.
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N
~ + ——>Holes
— <—Electrons
—>x Figure 3.5 Anelectric field E established in a bar
of silicon causes the holes to drift in the direction
It of E and the free electrons to drift in the opposite
" direction. Both the hole and electron drift currents
\4 are in the direction of E.

The free electrons acquire a drift velocity v, 4., given by
V,drite = — MU, B 3.9)

where the result is negative because the electrons move in the direction opposite to E. Here
w, is the electron mobility, which for intrinsic silicon is about 1350 cm’/V -s. Note that 1, is
about 2.5 times ., signifying that electrons move with much greater ease through the silicon
crystal than do holes.

Let’s now return to the single-crystal silicon bar shown in Fig. 3.5. Let the concentration
of holes be p and that of free electrons n. We wish to calculate the current component due to
the flow of holes. Consider a plane perpendicular to the x direction. In one second, the hole
charge that crosses that plane will be (Agpv, 4;;) coulombs, where A is the cross-sectional
area of the silicon bar and ¢ is the magnitude of electron charge. This then must be the hole
component of the drift current flowing through the bar,

Ip = quvp-drifl (3.10)
Substituting for v, 4 from Eq. (3.8), we obtain

I, =Agpp,E
We are usually interested in the current density J,, which is the current per unit cross-

sectional area,

IP
JpzzquupE 3.11)

The current component due to the drift of free electrons can be found in a similar manner. Note,
however, that electrons drifting from right to left result in a current component from left to
right. This is because of the convention of taking the direction of current flow as the direction
of flow of positive charge and opposite to the direction of flow of negative charge. Thus,

I, = —Agnv, 4
Substituting for v, 4., from Eq. (3.9), we obtain the current density J, =1,/A as
J,=qgnu,E (3.12)
The total drift current density can now be found by summing J, and J, from Egs. (3.11) and
(3.12),
J=J,+J,=q(pw, +nu,)E (3.13)
This relationship can be written as
J=0E (3.14)

143



144 Chapter3 Semiconductors

or
J=Elp
where the conductivity o is given by

o =q(pw, +n,)
and the resistivity p is given by
1 1

o qlpw, )
Observe that Eq. (3.15) is a form of Ohm’s law and can be written alternately as

E
P=7

. . V/cm
Thus the units of p are obtained from: =Q-cm.

Al/cm?

Find the resistivity of (a) intrinsic silicon and (b) p-type silicon with N, = 10'°/cm’. Use n, = 1.5x
10"/cm’, and assume that for intrinsic silicon x, = 1350 cm’/V - s and w, =430 cm’/V - s, and for the
doped silicon u, = 1110 cm’/V - s and w, =400 cm’/V - s. (Note that doping results in reduced carrier
mobilities.)

Solution

(a) For intrinsic silicon,
p=n=n=15x10"%cm’
Thus,

1
f = s
q(pr, +np,)

1
~ 1.6x107°(1.5x 10" x 480 + 1.5 x 10" x 1350)

o
=2.28x 10" Q-cm
(b) For the p-type silicon
p, =N, = 10"/cm’

(15 x 10")° ..

<
=z,

(3.15)

(3.16)

(3.17)

(3.18)
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Thus,
e 1
q(pr, +nu,)

1
1.6 x107"°(10" x 400 +2.25 x 10" x 1110)

1

o = = =156 Q2 -cm
1.6 x 107" x 10 x 400

Observe that the resistivity of the p-type silicon is determined almost entirely by the doping concentration.
Also observe that doping the silicon reduces its resistivity by a factor of about 10, a truly remarkable
change.

3.4 A uniform bar of n-type silicon of 2-pm length has a voltage of 1V applied across it. If N, =
10"°/cm’ and w, = 1350 cm’/V - s, find (a) the electron drift velocity, (b) the time it takes an electron to
cross the 2-pum length, (c¢) the drift-current density, and (d) the drift current in the case that the silicon
bar has a cross-sectional area of 0.25 umz.

Ans. 6.75 x 10° cm/s; 30 ps; 1.08 x 10* A/em’; 27 pA

3.3.2 Diffusion Current

Carrier diffusion occurs when the density of charge carriers in a piece of semiconductor is
not uniform. For instance, if by some mechanism the concentration of, say, holes, is made
higher in one part of a piece of silicon than in another, then holes will diffuse from the region
of high concentration to the region of low concentration. Such a diffusion process is like that
observed if one drops a few ink drops in a water-filled tank. The diffusion of charge carriers
gives rise to a net flow of charge, or diffusion current.

As an example, consider the bar of silicon shown in Fig. 3.6(a): By some unspecified
process, we have arranged to inject holes into its left side. This continuous hole injection
gives rise to and maintains a hole concentration profile such as that shown in Fig. 3.6(b).
This profile in turn causes holes to diffuse from left to right along the silicon bar, resulting in
a hole current in the x direction. The magnitude of the current at any point is proportional to
the slope of the concentration profile, or the concentration gradient, at that point,

dp(x)
b=l

(3.19) <
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Figure 3.6 A bar of silicon (a) into which holes are injected, thus creating the hole concentration profile
along the x axis, shown in (b). The holes diffuse in the positive direction of x and give rise to a hole diffusion
current in the same direction. Note that we are not showing the circuit to which the silicon bar is connected.

A

——> FElectron diffusion
~<—— Electron current

Figure 3.7 If the electron concentration pro-
file shown is established in a bar of silicon,
electrons diffuse in the x direction, giving rise
to an electron diffusion current in the negative-x
direction.

Electron concentration, n

=Y

where J, is the hole-current density (A/cmz), q is the magnitude of electron charge, D,
is a constant called the diffusion constant or diffusivity of holes; and p(x) is the hole
concentration at point x. Note that the gradient (dp/dx) is negative, resulting in a positive
current in the x direction, as should be expected.

In the case of electron diffusion resulting from an electron concentration gradient (see
Fig. 3.7), a similar relationship applies, giving the electron-current density,

> J,=4D, (3.20)
dx

where D, is the diffusion constant or diffusivity of electrons. Observe that a negative (dn/dx)
gives rise to a negative current, a result of the convention that the positive direction of current
is taken to be that of the flow of positive charge (and opposite to that of the flow of negative
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charge). For holes and electrons diffusing in intrinsic silicon, typical values for the diffusion
constants are D, = 12 cm’/s and D, =35cm’/s.

At this point the reader is probably wondering where the diffusion current in the silicon

bar in Fig. 3.6(a) goes. A good question, as we are not showing how the right-side end of the
bar is connected to the rest of the circuit. We will address this and related questions in detail
in our discussion of the pn junction in later sections.

Example 3.4

Consider a bar of silicon in which a hole concentration profile described by

x/L,

px) =pye

is established. Find the hole-current density at x = 0. Let p, = 10'6/01113, L= 1 wm, and D,= 12 cm’/s.
If the cross-sectional area of the bar is 100 wm’, find the current I

Solution

Thus, J (0)=qg-Lp,

12

N x 10"
X

=1.6x10" x

=192 A/em’
The current /, can be found from
I,=J,xA
=192x 100 x 107
=192 pA
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3.5 The linear electron-concentration profile shown in Fig. E3.5 has been established in a piece of silicon.
Ifn,= 10"/cm’ and W = 1 um, find the electron-current density in microamperes per micron squared
(LA/ umz). If a diffusion current of 1 mA is required, what must the cross-sectional area (in a direction
perpendicular to the page) be? Recall that D, = 35 cm’/s.
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n(x) A

0

Ans. 56 pA/um’; 18 um’

WX Figure E3.5

3.3.3 Relationship between D and n

A simple but powerful relationship ties the diffusion constant with the mobility,

D D

=2y (3.21)
> T
where V, = kT/q. The parameter V; is known as the thermal voltage. At room temperature,
T ~ 300 K and V; =25.9 mV. We will encounter V; repeatedly throughout this book. The
relationship in Eq. (3.21) is known as the Einstein relationship.
EXERCISE

3.6 Use the Einstein relationship to find D, and D, for intrinsic silicon using w, = 1350 cm’/V s and
1, =480 cm’/V -s.
Ans. 35 cm’/s; 12.4 cm’/s

3.4 The pn Junction

Having learned important semiconductor concepts, we are now ready to consider our first
practical semiconductor structure—the pn junction. As mentioned previously, the pn junction
implements the diode (Chapter 4) and plays the dominant role in the structure and operation
of the bipolar junction transistor (BJT, Chapter 6). As well, understanding pn junctions is very
important to the study of the MOSFET operation (Chapter 5).
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Metal contact Metal contact
p-type n-type
Anode silicon silicon Cathode

Figure 3.8 Simplified physical structure of the pn junction. (Actual geometries are given in Appendix A.)
As the pn junction implements the junction diode, its terminals are labeled anode and cathode.

3.4.1 Physical Structure

Figure 3.8 shows a simplified physical structure of the pn junction. It consists of a p-type
semiconductor (e.g., silicon) brought into close contact with an n-type semiconductor material
(also silicon). In actual practice, both the p and n regions are part of the same silicon crystal;
that is, the pn junction is formed within a single silicon crystal by creating regions of different
dopings (p and n regions). Appendix A provides a description of the fabrication process of
integrated circuits including pn junctions. As indicated in Fig. 3.8, external wire connections
are made to the p and n regions through metal (aluminum) contacts. If the pn junction is
used as a diode, these constitute the diode terminals and are therefore labeled “anode” and
“cathode” in keeping with diode terminology.’

3.4.2 Operation with Open-Circuit Terminals

Figure 3.9 shows a pn junction under open-circuit conditions—that is, the external terminals
are left open. The “+” signs in the p-type material denote the majority holes. The charge of
these holes is neutralized by an equal amount of bound negative charge associated with the
acceptor atoms. For simplicity, these bound charges are not shown in the diagram. Also not
shown are the minority electrons generated in the p-type material by thermal ionization.

In the n-type material the majority electrons are indicated by “—” signs. Here also, the
bound positive charge, which neutralizes the charge of the majority electrons, is not shown in
order to keep the diagram simple. The n-type material also contains minority holes generated
by thermal ionization but not shown in the diagram.

The Diffusion Current I, Because the concentration of holes is high in the p region and
low in the n region, holes diffuse across the junction from the p side to the n side. Similarly,
electrons diffuse across the junction from the n side to the p side. These two current components
add together to form the diffusion current /,,, whose direction is from the p side to the n side,
as indicated in Fig. 3.9.

The Depletion Region  The holes that diffuse across the junction into the n region quickly
recombine with some of the majority electrons present there and thus disappear from the scene.
This recombination process results also in the disappearance of some free electrons from the

*This terminology in fact is a carryover from that used with vacuum-tube technology, which was
the technology for making diodes and other electronic devices until the invention of the transistor
in 1947. This event ushered in the era of solid-state electronics, which changed not only electronics,
communications, and computers but indeed the world!
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Figure 3.9 (a) The pn junction with no applied voltage (open-circuited terminals). (b) The potential
distribution along an axis perpendicular to the junction.

n-type material. Thus some of the bound positive charge will no longer be neutralized by
free electrons, and this charge is said to have been uncovered. Since recombination takes
place close to the junction, there will be a region close to the junction that is depleted of free
electrons and contains uncovered bound positive charge, as indicated in Fig. 3.9.

The electrons that diffuse across the junction into the p region quickly recombine with
some of the majority holes there, and thus disappear from the scene. This results also in
the disappearance of some majority holes, causing some of the bound negative charge to be
uncovered (i.e., no longer neutralized by holes). Thus, in the p material close to the junction,
there will be a region depleted of holes and containing uncovered bound negative charge, as
indicated in Fig. 3.9.

From the above it follows that a carrier-depletion region will exist on both sides of the
junction, with the n side of this region positively charged and the p side negatively charged.
This carrier-depletion region—or, simply, depletion region—is also called the space-charge
region. The charges on both sides of the depletion region cause an electric field E to be
established across the region in the direction indicated in Fig. 3.9. Hence a potential difference
results across the depletion region, with the n side at a positive voltage relative to the p side, as
shown in Fig. 3.9(b). Thus the resulting electric field opposes the diffusion of holes into the n
region and electrons into the p region. In fact, the voltage drop across the depletion region acts
as a barrier that has to be overcome for holes to diffuse into the n region and electrons to diffuse
into the p region. The larger the barrier voltage, the smaller the number of carriers that will be
able to overcome the barrier, and hence the lower the magnitude of diffusion current. Thus it is
the appearance of the barrier voltage V that limits the carrier diffusion process. It follows that
the diffusion current /,, depends strongly on the voltage drop V, across the depletion region.
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The Drift Current I; and Equilibrium 1In addition to the current component I,, due to
majority-carrier diffusion, a component due to minority-carrier drift exists across the junction.
Specifically, some of the thermally generated holes in the n material move toward the junction
and reach the edge of the depletion region. There, they experience the electric field in the
depletion region, which sweeps them across that region into the p side. Similarly, some of
the minority thermally generated electrons in the p material move to the edge of the depletion
region and get swept by the electric field in the depletion region across that region into the n
side. These two current components—electrons moved by drift from p to n and holes moved by
drift from n to p—add together to form the drift current /;, whose direction is from the n side to
the p side of the junction, as indicated in Fig. 3.9. Since the current / is carried by thermally
generated minority carriers, its value is strongly dependent on temperature; however, it is
independent of the value of the depletion-layer voltage V,. This is due to the fact that the
drift current is determined by the number of minority carriers that make it to the edge of the
depletion region; any minority carriers that manage to get to the edge of the depletion region
will be swept across by E irrespective of the value of E or, correspondingly, of V.

Under open-circuit conditions (Fig. 3.9) no external current exists; thus the two opposite
currents across the junction must be equal in magnitude:

Iy=1;

This equilibrium condition® is maintained by the barrier voltage V,. Thus, if for some reason
I, exceeds I, then more bound charge will be uncovered on both sides of the junction, the
depletion layer will widen, and the voltage across it (V,) will increase. This in turn causes
I, to decrease until equilibrium is achieved with I, = I;. On the other hand, if I, exceeds I,
then the amount of uncovered charge will decrease, the depletion layer will narrow, and the
voltage across it (V) will decrease. This causes /,, to increase until equilibrium is achieved
with I, = [;.

The Junction Built-in Voltage With no external voltage applied, the barrier voltage V,
across the pn junction can be shown to be given by’

Vo=V 1n<NA]2VD) (3.22)
n;
where N, and N,, are the doping concentrations of the p side and n side of the junction,
respectively. Thus V,, depends both on doping concentrations and on temperature. It is known
as the junction built-in voltage. Typically, for silicon at room temperature, V, is in the range
of 0.6 Vto 0.9 V.

When the pn junction terminals are left open-circuited, the voltage measured between them
will be zero. That is, the voltage V|, across the depletion region does not appear between the
junction terminals. This is because of the contact voltages existing at the metal-semiconductor
junctions at the terminals, which counter and exactly balance the barrier voltage. If this were
not the case, we would have been able to draw energy from the isolated pn junction, which
would clearly violate the principle of conservation of energy.

Width of and Charge Stored in the Depletion Region Figure 3.10 provides further
illustration of the situation that obtains in the pn junction when the junction is in equilibrium.

“In fact, in equilibrum the equality of drift and diffusion currents applies not just to the total currents but
also to their individual components. That is, the hole drift current must equal the hole diffusion current
and, similarly, the electron drift current must equal the electron diffusion current.

>The derivation of this formula and of a number of others in this chapter can be found in textbooks
dealing with devices, such as that by Streetman and Bannerjee (see the reading list in Appendix I).
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Figure 3.10 (a) A pn junction with the terminals open-circuited. (b) Carrier concentrations; note that
N, > N,,. (¢) The charge stored in both sides of the depletion region; O, = !Q +| = |Q7|. (d) The built-in
voltage V.



3.4 The pn Junction

In Fig. 3.10(a) we show a junction in which N, > N,,, a typical situation in practice. This is
borne out by the carrier concentration on both sides of the junction, as shown in Fig. 3.10(b).
Note that we have denoted the minority-carrier concentrations in both sides by n,, and p,,
with the additional subscript “0” signifying equilibrium (i.e., before external voltages are
applied, as will be seen in the next section). Observe that the depletion region extends in
both the p and n materials and that equal amounts of charge exist on both sides (Q, and Q_
in Fig. 3.10c). However, since usually unequal dopings N, and N, are used, as in the
case illustrated in Fig. 3.10, the width of the depletion layer will not be the same on the
two sides. Rather, to uncover the same amount of charge, the depletion layer will extend
deeper into the more lightly doped material. Specifically, if we denote the width of the
depletion region in the p side by x, and in the n side by x,, we can express the magnitude of
the charge on the 7 side of the junction as

|0, | = gAx,N,, (3.23)
and that on the p side of the junction as
|0_| = qAx,N, (3.24)

where A is the cross-sectional area of the junction in the plane perpendicular to the page. The
charge equality condition can now be written as

qAx,Np, = qAx,N,
which can be rearranged to yield

N
T (3.25)
x, Np
In actual practice, it is usual for one side of the junction to be much more heavily doped than
the other, with the result that the depletion region exists almost entirely on one side (the lightly
doped side).

The width W of the depletion layer can be shown to be given by

W=x +x = _es —1 + —1 V, (3.26)
=X X = .

" ’ q N A N, D 0
where €, is the electrical permittivity of silicon = 11.760 =11.7x8.85 x 10714 F/em=1.04 x

10" F/em. Typically W is in the range 0.1 pm to 1 wm. Eqs. (3.25) and (3.26) can be used
to obtain x, and x, in terms of W as

N,
x, =W (3.27)
N,+N,
N
x,=W—= (3.28)
N,+N,

The charge stored on either side of the depletion region can be expressed in terms of W by
utilizing Eqs. (3.23) and (3.27) to obtain

0,=10,|=|0|
=A NNy w 3.29
0,= 4<m) (3.29)

Finally, we can substitute for W from Eq. (3.26) to obtain

N,N,
=A[2 Vi 3.30
QJ \/ ESQ(NA +ND> 0 ( )

These expressions for Q, will prove useful in subsequent sections.

A A
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Consider a pn junction in equilibrium at room temperature (7 = 300 K) for which the dop-

ing concentrations are N, = 10"*/cm’ and N, = 10'°/cm’ and the cross-sectional area A = 10™* cm’.

Calculate p,, n, n,, p,g, Voo W, x,, x,, and Q,. Use n, = 1.5 x 10"/cm’.

Solution
p,=N, = 10% em™
2 2 10, 2
) ; 1.5x 10 =
npozn_,:n_,z% —=225% 10" cm ™’
p, N, 10
n,~N,=10"cm”’
2 2 10,2
: : 1.5x 10 -
po= e _AIXT) 505510t cm™
n, N, 10

To find V; we use Eq. (3.22),

N,N,
Vo= VTln( AZD)
n;

where
. = kT _ 8.62x 107> x 300 (eV)
q q (e)
=259%x10"V
Thus,

S [10% %10
V,=259% 10" In[ —
225% 10

=0.814V
To determine W we use Eq. (3.26):

- 2x1.04x 102/ 1 N 1 i
= |————— | — + —= ] x0.
1.6 x 107" 10" 10

=327 x 10" cm =0.327 pm
To determine x, and x, we use Egs. (3.27) and (3.28), respectively:
N
x, =W 2
NA + ND
10[8

=0.327———— =0.324 pm
10" +10' "

ND
x,=W
N,+N,
10[6

=0.327————- =0.003 pm
10°+10' %

Finally, to determine the charge stored on either side of the depletion region, we use Eq. (3.29):

10" x 10"
10"+ 10"

=5.18x 10 * C=5.18 pC

0,=10"x 1.6 x 1019< ) x0.327 x 10
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3.7 Show that

v, = 1 q N,Np W
2\€, /J\N,+N,
3.8 Show that for a pn junction in which the p side is much more heavily doped than the n side (i.e., N, > N,)),
referred to as a p”n diode, Egs. (3.26), (3.27), (3.28), (3.29), and (3.30) can be simplified as follows:

2 ¢ !
we | Sy (3.26)
qN),
X, =W (3.27)
x, >~ WI/(N,/N,) (3.28)
Q, ~AgN,W (3.29)

0, ~A\/2e.qN,V, (3.30)

3.9 If in the fabrication of the pn junction in Example 3.5, it is required to increase the minority-carrier
concentration in the n region by a factor of 2, what must be done?
Ans. Lower N,, by a factor of 2.

3.5 The pn Junction with an Applied Voltage

Having studied the open-circuited pn junction in detail, we are now ready to apply a dc voltage
between its two terminals to find its electrical conduction properties. If the voltage is applied
so that the p side is made more positive than the n side, it is referred to as a forward-bias®
voltage. Conversely, if our applied dc voltage is such that it makes the n side more positive
than the p side, it is said to be a reverse-bias voltage. As will be seen, the pn junction exhibits
vastly different conduction properties in its forward and reverse directions.

Our plan is as follows. We begin by a simple qualitative description in Section 3.5.1
and then consider an analytical description of the i—v characteristic of the junction in
Section 3.5.2.

3.5.1 Qualitative Description of Junction Operation

Figure 3.11 shows the pn junction under three different conditions: (a) the open-circuit or
equilibrium condition studied in the previous section; (b) the reverse-bias condition, where a
dc voltage V is applied; and (c) the forward-bias condition, where a dc voltage V. is applied.

°For the time being, we take the term bias to refer simply to the application of a dc voltage. We will see
in later chapters that it has a deeper meaning in the design of electronic circuits.
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Observe that in the open-circuit case, a barrier voltage V,, develops, making n more positive
than p, and limiting the diffusion current 7, to a value exactly equal to the drift current I,
thus resulting in a zero current at the junction terminals, as should be the case, since the
terminals are open-circuited. Also, as mentioned previously, the barrier voltage V,, though it
establishes the current equilibrium across the junction, does not in fact appear between the
junction terminals.

Consider now the reverse-bias case in (b). The externally applied reverse-bias voltage
Vy is in the direction to add to the barrier voltage, and it does, thus increasing the effective
barrier voltage to (V;, + V) as shown. This reduces the number of holes that diffuse into the
n region and the number of electrons that diffuse into the p region. The end result is that the
diffusion current /, is dramatically reduced. As will be seen shortly, a reverse-bias voltage of
a volt or so is sufficient to cause I, >~ 0, and the current across the junction and through the
external circuit will be equal to /. Recalling that I is the current due to the drift across the
depletion region of the thermally generated minority carriers, we expect I to be very small
and to be strongly dependent on temperature. We will show this to be the case very shortly.
We thus conclude that in the reverse direction, the pn junction conducts a very small and
almost-constant current equal to /.

Before leaving the reverse-bias case, observe that the increase in barrier voltage will be
accompanied by a corresponding increase in the stored uncovered charge on both sides of the
depletion region. This in turn means a wider depletion region, needed to uncover the additional
charge required to support the larger barrier voltage (V; + V,). Analytically, these results can
be obtained easily by a simple extension of the results of the equilibrium case. Thus the width
of the depletion region can be obtained by replacing V, in Eq. (3.26) by (V, + V;),

2 (1 1
W=rx,+x,= | = —+—) VotV 33) =<
’ qg \N, N,

and the magnitude of the charge stored on either side of the depletion region can be determined
by replacing Vj in Eq. (3.30) by (V, + Vj),

N.N,
0,= A\/26s61<m) Vo+ Vo) (332 =
A D

We next consider the forward-bias case shown in Fig. 3.11(c). Here the applied voltage V, is
in the direction that subtracts from the built-in voltage V,, resulting in a reduced barrier voltage
(Vy, — V) across the depletion region. This reduced barrier voltage will be accompanied by
reduced depletion-region charge and correspondingly narrower depletion-region width W.
Most importantly, the lowering of the barrier voltage will enable more holes to diffuse from
p to n and more electrons to diffuse from n to p. Thus the diffusion current 7,, increases
substantially and, as will be seen shortly, can become many orders of magnitude larger than the
drift current /. The current / in the external circuit is of course the difference between /,, and I,

I=1,—1I
and it flows in the forward direction of the junction, from p to n. We thus conclude that the

pn junction can conduct a substantial current in the forward-bias region and that current is
mostly a diffusion current whose value is determined by the forward-bias voltage V.
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3.5.2 The Current-Voltage Relationship of the Junction

We are now ready to find an analytical expression that describes the current—voltage
relationship of the pn junction. In the following we consider a junction operating with a
forward applied voltage V and derive an expression for the current / that flows in the forward
direction (from p to n). However, our derivation is general and will be seen to yield the reverse
current when the applied voltage V is made negative.

From the qualitative description above we know that a forward-bias voltage V subtracts
from the built-in voltage V;, thus resulting in a lower barrier voltage (V, — V). The lowered
barrier in turn makes it possible for a greater number of holes to overcome the barrier and
diffuse into the n region. A similar statement can be made about electrons from the n region
diffusing into the p region.

Let us now consider the holes injected into the n region. The concentration of holes in the
n region at the edge of the depletion region will increase considerably. In fact, an important
result from device physics shows that the steady-state concentration at the edge of the depletion
region will be

Pa(x,) =pyeT (3.33)

That is, the concentration of the minority holes increases from the equilibrium value of p,,
(see Fig. 3.10) to the much larger value determined by the value of V, given by Eq. (3.33).

We describe this situation as follows: The forward-bias voltage V results in an excess
concentration of minority holes at x = x,, given by

Excess concentration = p,ge¢”'" —p.,
=p.(e” —1) (3.34)

The increase in minority-carrier concentration in Eqgs. (3.33) and (3.34) occurs at the edge
of the depletion region (x =x,). As the injected holes diffuse into the » material, some will
recombine with the majority electrons and disappear. Thus, the excess hole concentration will
decay exponentially with distance. As a result, the total hole concentration in the n material
will be given by

P,(xX) =p,o + (Excess concentration)ef(xfx“)/L"

Substituting for the “Excess concentration” from Eq. (3.34) gives

Pa) = Pro + Py (€7 = 1) ) (3.35)

The exponential decay is characterized by the constant L, which is called the diffusion length
ofholes in the n material. The smaller the value of L, the faster the injected holes will recombine
with the majority electrons, resulting in a steeper decay of minority-carrier concentration.

Figure 3.12 shows the steady-state minority-carrier concentration profiles on both sides
of a pn junction in which N, > N,,. Let’s stay a little longer with the diffusion of holes into
the n region. Note that the shaded region under the exponential represents the excess minority
carriers (holes). From our study of diffusion in Section 3.3, we know that the establishment
of a carrier concentration profile such as that in Fig. 3.12 is essential to support a steady-state
diffusion current. In fact, we can now find the value of the hole—diffusion current density by
applying Eq. (3.19),

dp,(x)
dx

J,(x)=—¢gD,
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Figure 3.12 Minority-carrier distribution in a forward-biased pn junction. It is assumed that the p region is
more heavily doped than the n region; N, > N,,.

Substituting for p, (x) from Eq. (3.35) gives

J,(0) = q(f—)p (" —1)e (o)t (3.36)

P

As expected, J,(x) is highest at x = x

n’

D
J,(x,) = q(L—”)pno(eV”T —1) (3.37)

14

and decays exponentially for x > x,, as the minority holes recombine with the majority
electrons. This recombination, however, means that the majority electrons will have to be
replenished by a current that injects electrons from the external circuit into the n region
of the junction. This latter current component has the same direction as the hole current
(because electrons moving from right to left give rise to current in the direction from left to
right). It follows that as J,(x) decreases, the electron current component increases by exactly
the same amount, making the total current in the n material constant at the value given by
Eq. (3.37).

An exactly parallel development can be applied to the electrons that are injected from the
n to the p region, resulting in an electron diffusion current given by a simple adaptation of
Eq. (3.37),

J,(=x,) = q(%)nPO(EVNT —1) (3.38)

Now, although the currents in Eqgs. (3.37) and (3.38) are found at the two edges of the depletion
region, their values do not change in the depletion region. Thus we can drop the location
descriptors (x,), (—xp), add the two current densities, and multiply by the junction area A to
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obtain the total current / as
1= A(Jp + Jn)
D D
I :Aq(—pp,,o +—n 0) ("7 —1)
L, L, "

Substituting for p,, = n[z/ND and for n,, = n,-z/N ', gives

D D
1= Aqn,?( L —> ("7 —1) (3.39)
LN, LN,

From this equation we note that for a negative V (reverse bias) with a magnitude of a few
times V;. (25.9 mV), the exponential term becomes essentially zero, and the current across the
junction becomes negative and constant. From our qualitative description in Section 3.5.1,
we know that this current must be /. Thus,

I=1I(e" - 1) (3.40)
where
I.=A 2( b, + D, ) (3.41)
= qni E— .
§ LN, LN,

Figure 3.13 shows the I-V characteristic of the pn junction (Eq. 3.40). Observe that in
the reverse direction the current saturates at a value equal to —/;. For this reason, I is given
the name saturation current. From Eq. (3.41) we see that [ is directly proportional to the
cross-sectional area A of the junction. Thus, another name for /g, one we prefer to use in this
book, is the junction scale current. Typical values for /;, for junctions of various areas, range
from 107 A to 107" A.

Besides being proportional to the junction area A, the expression for /; in Eq. (3.41)
indicates that I is proportional to n,2 which is a very strong function of temperature (see
Eq.3.2).

IA

<Y

T

N

Figure 3.13 The pn junction /-V characteristic.
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For the pn junction considered in Example 3.5 for which N, = 1018/cm3, N,= 1016/cm3, A= 10_4cm2, and
n,=1.5x 10"%cm’, let L,=5pm, L, =10 pm, D, (in the n region) = 10 cm’/V-s, and D, (in the p
region) = 18 cm’/V-s. The pn junction is forward biased and conducting a current / = 0.1 mA. Calculate:
(a) Ig; (b) the forward-bias voltage V; and (c) the component of the current / due to hole injection and that

due to electron injection across the junction.

Solution
(a) Using Eq. (3.41), we find  as

2
L,=10"*x 1.6 x 107" x (1.5 x 10‘°)

(b) In the forward direction,

Thus,

For I =0.1 mA,

( 10 N 18 )
X

5%x107*x 10"  10x 107*x 10"
=73x 10 "A

I=1I("" —1)

VIV
~ T
~ e

V=Vl !
= ny —
T IS

0.1 x10°

V=259%x10"In| -~
7.3 x 10

N————

=0.605 V

(c) The hole-injection component of / can be found using Eq. (3.37)

D
Ip :AqL—ppno(eWVT — 1)

P

Similarly, 7, can be found using Eq. (3.39),

Thus,

For our case,

D n
=Aq—pn—‘(eWVT —1)
L, N,
Dn n12 V/V.
I,=Aq—— ("7 —1)
Ln NA
I — DP Ln NA
1, \D,/\L,J]\N,
I, 10 10 10"

P

= — X
I, 18" 5

1016:1.11><102=111
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Example 3.6 continued
Thus most of the current is conducted by holes injected into the n region.
Specifically,

111
I, = 175 0.1 =0.0991 mA

I = L x 0.1 =0.0009 mA
112

This stands to reason, since the p material has a doping concentration 100 times that of the » material.

3.10 Show thatif N, > N,,

Dp

LN,

P

I :Aqni2

3.11 For the pn junction in Example 3.6, find the value of I and that of the current / at V = 0.605 V (same
voltage found in Example 3.6 at a current / = 0.1 mA) if N}, is reduced by a factor of 2.
—14

Ans. 1.46 x 107 A; 0.2 mA

3.12 For the pn junction considered in Examples 3.5 and 3.6, find the width of the depletion region W
corresponding to the forward-bias voltage found in Example 3.6. (Hint: Use the formula in Eq. (3.31)
with V, replaced with —V,,.)
Ans. 0.166 pm

3.13 For the pn junction considered in Examples 3.5 and 3.6, find the width of the depletion region W and
the charge stored in the depletion region Q, when a 2-V reverse bias is applied. Also find the value
of the reverse current /.
Ans. 0.608 wm; 9.63 pC; 7.3 x 10" A

3.5.3 Reverse Breakdown

The description of the operation of the pn junction in the reverse direction, and the /—V
relationship of the junction in Eq. (3.40), indicate that at a reverse-bias voltage —V, with
V > V,, the reverse current that flows across the junction is approximately equal to /; and
thus is very small. However, as the magnitude of the reverse-bias voltage V is increased, a
value is reached at which a very large reverse current flows as shown in Fig. 3.14. Observe
that as V reaches the value V,, the dramatic increase in reverse current is accompanied by
a very small increase in the reverse voltage; that is, the reverse voltage across the junction
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IA

Figure 3.14 The I-V characteristic of the pn
junction showing the rapid increase in reverse
current in the breakdown region.

remains very close to the value V,. The phenomenon that occurs at V = V, is known as
junction breakdown. It is not a destructive phenomenon. That is, the pn junction can be
repeatedly operated in the breakdown region without a permanent effect on its characteristics.
This, however, is predicated on the assumption that the magnitude of the reverse-breakdown
current is limited by the external circuit to a “safe” value. The “safe” value is one that results
in the limitation of the power dissipated in the junction to a safe, allowable level.

There are two possible mechanisms for pn junction breakdown: the zener effect’ and
the avalanche effect. If a pn junction breaks down with a breakdown voltage V, <5V, the
breakdown mechanism is usually the zener effect. Avalanche breakdown occurs when V,
is greater than approximately 7 V. For junctions that break down between 5V and 7 V, the
breakdown mechanism can be either the zener or the avalanche effect or a combination of
the two.

Zener breakdown occurs when the electric field in the depletion layer increases to the
point of breaking covalent bonds and generating electron—hole pairs. The electrons generated
in this way will be swept by the electric field into the n side and the holes into the p side.
Thus these electrons and holes constitute a reverse current across the junction. Once the zener
effect starts, a large number of carriers can be generated, with a negligible increase in the
junction voltage. Thus the reverse current in the breakdown region will be large and its value
must be determined by the external circuit, while the reverse voltage appearing between the
diode terminals will remain close to the specified breakdown voltage V.

The other breakdown mechanism, avalanche breakdown, occurs when the minority carriers
that cross the depletion region under the influence of the electric field gain sufficient kinetic
energy to be able to break covalent bonds in atoms with which they collide. The carriers
liberated by this process may have sufficiently high energy to be able to cause other carriers
to be liberated in another ionizing collision. This process keeps repeating in the fashion of an
avalanche, with the result that many carriers are created that are able to support any value of

"Named after an early worker in the area. Note that the subscript Z in V, denotes zener. We will use V,
to denote the breakdown voltage whether the breakdown mechanism is the zener effect or the avalanche
effect.
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reverse current, as determined by the external circuit, with a negligible change in the voltage
drop across the junction.

As will be seen in Chapter 4, some pn junction diodes are fabricated to operate specifically
in the breakdown region, where use is made of the nearly constant voltage V.

3.6 Capacitive Effects in the pn Junction

There are two charge-storage mechanisms in the pn junction. One is associated with the
charge stored in the depletion region, and the other is associated with the minority-carrier
charge stored in the n and p materials as a result of the concentration profiles established by
carrier injection. While the first is easier to see when the pn junction is reverse biased, the
second is in effect only when the junction is forward biased.

3.6.1 Depletion or Junction Capacitance

When a pn junction is reverse biased with a voltage V;, the charge stored on either side of the
depletion region is given by Eq. (3.32),

0,=4 |2 N,Np ( )
— € g——— ‘/ ‘/
J sqNA N, ot Vi

Thus, for a given pn junction,

Q,=ayVy+V (3.42)

NN,
a=A_|2eq—"— (3.43)
N,+N,

Thus Q, is nonlinearly related to V,, as shown in Fig. 3.15. This nonlinear relationship makes
it difficult to define a capacitance that accounts for the need to change Q, whenever Vj is

where « is given by

-
L

Slope = C,;

Bias point

Figure 3.15 The charge stored on
- either side of the depletion layer as a
Vo Reverse voltage,Vy function of the reverse voltage V.

Charge stored in depletion layer, Q,

=]
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changed. We can, however, assume that the junction is operating at a point such as Q, as
indicated in Fig. 3.15, and define a capacitance C; that relates the change in the charge O, to
a change in the voltage V,,

4,

=
Ve ly o,

(3.44)

This incremental-capacitance approach turns out to be quite useful in electronic circuit design,
as we shall see throughout this book.
Using Eq. (3.44) together with Eq. (3.42) yields

C=—2 _ (3.45)

S NATANERTA

The value of C; at zero reverse bias can be obtained from Eq. (3.45) as

Cop=—2% (3.46)
which enables us to express C; as

(3.47)

where Cj, is given by Eq. (3.46) or alternatively if we substitute for o from Eq. (3.43) by

4 (89 NaNo (L
o))

Before leaving the subject of depletion-region or junction capacitance we point out that in
the pn junction we have been studying, the doping concentration is made to change abruptly
at the junction boundary. Such a junction is known as an abrupt junction. There is another
type of pn junction in which the carrier concentration is made to change gradually from one
side of the junction to the other. To allow for such a graded junction, the formula for the
junction capacitance (Eq. 3.47) can be written in the more general form

C,:#
J 1+VR m
Vo

where m is a constant called the grading coefficient, whose value ranges from 1/3 to 1/2
depending on the manner in which the concentration changes from the p to the n side.

(3.49)

165
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3.14 For the pn junction considered in Examples 3.5 and 3.6, find C,, and C; at V, =2 V. Recall that
V,=0.814 V,N, = 10"/cm’, N, = 10"/cm’, and A = 10" cm’.
Ans. 3.2 pF; 1.7 pF

3.6.2 Diffusion Capacitance

Consider a forward-biased pn junction. In steady state, minority-carrier distributions in the
p and n materials are established, as shown in Fig. 3.12. Thus a certain amount of excess
minority-carrier charge is stored in each of the p and n bulk regions (outside the depletion
region). If the terminal voltage V changes, this charge will have to change before a new steady
state is achieved. This charge-storage phenomenon gives rise to another capacitive effect,
distinctly different from that due to charge storage in the depletion region.

To calculate the excess minority-carrier charge, refer to Fig. 3.12. The excess hole
charge sgtored in the n region can be found from the shaded area under the exponential as
follows:

0, = Aq x shaded area under the p, (x)curve
= Aq[pn('xn) _pnO]Lp

Substituting for p,(x,) from Eq. (3.33) and using Eq. (3.37) enables us to express O, as

L2
0,= 1, (3.50)

P

The factor (L;/Dp) that relates Q, to 1, is a useful device parameter that has the dimension of
time (s) and is denoted 7,

LZ
== 3.51
) TP Dp ( )
Thus,
> 0,=1l, (3.52)

The time constant 7, is known as the excess minority-carrier (hole) lifetime. /7 is the
average time it takes for a hole injected into the n region to recombine with a majority electron.
This definition of 7, implies that the entire charge Q, disappears and has to be replenished
every 7, seconds. The current that accomplishes the replenishing is /, = Q,/z,. This is an
alternate derivation for Eq. (3.52).

*Recall that the area under an exponential curve Ae s equal to AB.
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A relationship similar to that in Eq. (3.52) can be developed for the electron charge stored
in the p region,
0,=r1l, (3.53) <

where 7, is the electron lifetime in the p region. The total excess minority-carrier charge can
be obtained by adding together Q, and Q,,

O=rtl,+1,l, (3.54) <<
This charge can be expressed in terms of the diode current I =1, + I, as
0=r1,l (3.55) <

where 7; is called the mean transit time of the junction. Obviously, 7, is related to 7, and 7,.
Furthermore, for most practical devices, one side of the junction is much more heavily doped
than the other. For instance, if N, >> N, one can show that [, > 1, 1~1,0,> 0,,0~0,,
and thus 7, >~ T,

For small changes around a bias point, we can define an incremental diffusion
capacitance C, as

dQ
C,=— 3.56
“= 7y (3.56)
and can show that
C, = (T—T>1 (357 =<
Vr

where / is the forward-bias current. Note that C, is directly proportional to the forward current
I'and thus is negligibly small when the diode is reverse biased. Also note that to keep C, small,
the transit time 7, must be made small, an important requirement for a pn junction intended
for high-speed or high-frequency operation.

3.15 Use the definition of C, in Eq. (3.56) to derive the expression in Eq. (3.57) by means of Egs. (3.55)
and (3.40).

3.16 For the pn junction considered in Examples 3.5 and 3.6 for which D, = 10 cm’/V -s, and L,=5pm,
find 7, and C, at a forward-bias current of 0.1 mA. Recall that for this junction, /, >~ 1.
Ans. 25 ns; 96.5 pF
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Summary

Today’s microelectronics technology is almost entirely
based on the semiconductor material silicon. If a circuit
is to be fabricated as a monolithic integrated circuit (IC)
it is made using a single silicon crystal, no matter how
large the circuit is (a recent chip contains 4.31 billion
transistors).

In acrystal of intrinsic or pure silicon, the atoms are held in
position by covalent bonds. At very low temperatures, all
the bonds are intact, and no charge carriers are available to
conductelectrical current. Thus, at such low temperatures,
silicon behaves as an insulator.

At room temperature, thermal energy causes some of the
covalent bonds to break, thus generating free electrons
and holes that become available for current conduction.

Current in semiconductors is carried by free electrons and
holes. Their numbers are equal and relatively small in
intrinsic silicon.

The conductivity of silicon can be increased dramatically
by introducing small amounts of appropriate impurity
materials into the silicon crystal in a process called doping.

There are two kinds of doped semiconductor: n-type, in
which electrons are abundant, and p-type, in which holes
are abundant.

There are two mechanisms for the transport of charge
carriers in semiconductors: drift and diffusion.

Carrier drift results when an electric field E is applied
across a piece of silicon. The electric field accelerates the
holes in the direction of E and the electrons in the direction
opposite to E. These two current components add together
to produce a drift current in the direction of E.

Carrier diffusion occurs when the concentration of charge
carriers is made higher in one part of the silicon
crystal than in other parts. To establish a steady-state
diffusion current, a carrier concentration gradient must
be maintained in the silicon crystal.

A basic semiconductor structure is the pn junction. It is
fabricated in a silicon crystal by creating a p region in
close proximity to an n region. The pn junction is a diode
and plays a dominant role in the structure and operation
of transistors.

When the terminals of the pn junction are left open,
no current flows externally. However, two equal and

opposite currents, I, and I, flow across the junction,
and equilibrium is maintained by a built-in voltage Vj
that develops across the junction, with the » side positive
relative to the p side. Note, however, that the voltage
across an open junction is 0V, since V; is canceled
by potentials appearing at the metal-to-semiconductor
connection interfaces.

The voltage V, appears across the depletion region, which
extends on both sides of the junction.

The diffusion current I, is carried by holes diffusing from
p to n and electrons diffusing from n to p. I,, flows from
p to n, which is the forward direction of the junction. Its
value depends on V.

The drift current /g is carried by thermally generated
minority electrons in the p material that are swept across
the depletion layer into the n side, and by thermally
generated minority holes in the n side that are swept across
the depletion region into the p side. I flows from # to p,
in the reverse direction of the junction, and its value is a
strong function of temperature but independent of V.

Forward biasing the pn junction, that is, applying an
external voltage V that makes p more positive than n,
reduces the barrier voltage to V;, — V and results in an
exponential increase in /,, while /¢ remains unchanged.
The net result is a substantial current I = I, — I
that flows across the junction and through the external
circuit.

Applying a negative V reverse biases the junction and
increases the barrier voltage, with the result that 7, is
reduced to almost zero and the net current across the
junction becomes the very small reverse current /.

If the reverse voltage is increased in magnitude to a value
V,, specific to the particular junction, the junction breaks
down, and a large reverse current flows. The value of the
reverse current must be limited by the external circuit.

Whenever the voltage across a pn junction is changed,
some time has to pass before steady state is reached. This
is due to the charge-storage effects in the junction, which
are modeled by two capacitances: the junction capacitance
C; and the diffusion capacitance C,.

For future reference, we present in Table 3.1 a summary
of pertinent relationships and the values of physical
constants.
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Table 3.1 Summary of Important Equations

Values of Constants and Parameters

Quantity Relationship (for Intrinsic Si at 7 = 300 K)
Carrier concentration in n, = BT e 5/ B=73x10" cm K *?
intrinsic silicon (cm_3) E = 1.12eV

k=8.62x 10" eV/K
n,=1.5x10"/cm’

Diffusion current J =—gD di’ q=1.60 x 107" coulomb
density (Alem®) ’ gndx D,=12 cm’/s
J,=ab, - D, =34cm’/s
Drift current density J e = q(pup +nu,)E w, =480 em’/V s

(A/cmz)

w,= 1350 cm*/V -s

Resistivity (€2-cm)

p= ll[q(pup +nun)] w, and 1, decrease with the increase in
doping concentration

D D

Relationship between L ="L=V, V, =kTlq~25.9 mV

mobility and diffusivity P
Carrier concentration in n,, >~ Np

n-type silicon (cm™) po= 2N

w0 = i /Np

Carrier concentration in Ppo XN,

p-type silicon (cm ™) o= n? IN,

Junction built-in
voltage (V)

NN,
V,=V, ln< AZD)
n;

Width of depletion
region (cm)

=x,tx, e, =11.7¢,

2¢ 1 1 €,=8.854 x 107" F/em
= [= —+—> V,+V,
q <NA N, (Vo+ Vi)
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Table 3.1 continued

Values of Constants and Parameters

Quantity Relationship (for Intrinsic Si at 7 = 300 K)
N,N,
Charge stored in depletion 0, = qN A 1131 AW
layer (coulomb) AT Np
I =1+1,
Forward current (A) D
I = Aant—2— (" 1
= Aqn; e
pN D
D
In:Aqni2 = (eV/VT - 1)
LnNA

Saturation current (A)

I-V relationship

Minority-carrier
lifetime (s)

2 2
v, =L/D, t1,=LID,

L,,L,=1pmto 100 pm

4
7,7, = Insto 10" ns

Minority-carrier
charge storage
(coulomb)

Qp = rplp 0,=1,l,
0=0,+0,=1,1

Depletion capacitance (F)

Co=a () (Lae) L

o 2 J\N,+N, /) V,
/AN

/()

m=

W=
N =

Diffusion
capacitance (F)




If in the following problems the need arises for the values of
particular parameters or physical constants that are not stated,
please consult Table 3.1.

Section 3.1: Intrinsic Semiconductors

3.1 Find values of the intrinsic carrier concentration n,
for silicon at —55°C, 0°C, 20°C, 75°C, and 125°C. At
each temperature, what fraction of the atoms is ionized?
Recall that a silicon crystal has approximately 5 x 10%
atoms/cm’.

3.2 Calculate the value of n, for gallium arsenide (GaAs) at
T =300 K. The constant B = 3.56 x 10" cm K ** and the
bandgap voltage E, = 1.42 eV.

Section 3.2: Doped Semiconductors

3.3 For a p-type silicon in which the dopant concentration
N,=5x 10"/cm’, find the hole and electron concentrations
at 7 =300 K.

3.4 For asilicon crystal doped with phosphorus, what must
N, be if at 7= 300 K the hole concentration drops below the
intrinsic level by a factor of 10%2

3.5 In a phosphorus-doped silicon layer with impurity
concentration of 1017/cm3, find the hole and electron con-
centrations at 27°C and 125°C.

Section 3.3: Current Flow in Semiconductors

3.6 A young designer, aiming to develop intuition concern-
ing conducting paths within an integrated circuit, examines
the end-to-end resistance of a connecting bar 10-um long,
3-pm wide, and 1 wm thick, made of various materials. The
designer considers:

(a) intrinsic silicon

(b) n-doped silicon with N, =5 x 10"/cm’

(c) n-doped silicon with N, =5 x 10%/cm’

(d) p-doped silicon with N, =5 x 10"*/cm’

(e) aluminum with resistivity of 2.8 w<2-cm

Find the resistance in each case. For intrinsic silicon, use the
data in Table 3.1. For doped silicon, assume w, = 3u, =
1200 cm’/V - s. (Recall that R = pL/A.)

3.7 Contrast the electron and hole drift velocities through
a 10-pwm layer of intrinsic silicon across which a voltage

of 3V is imposed. Let p, = 1350 cm’/V-s and W, =
480 cm’/V - s-

3.8 Find the current that flows in a silicon bar of 10-pum
length having a 5-pum x 4-pm cross-section and having
free-electron and hole densities of 10*/cm’ and 1016/cm3,
respectively, when a 1V is applied end-to-end. Use pu, =
1200 em’/V -s and p, = 500 cm’/V -s.

3.9 In a 10-pm-long bar of donor-doped silicon, what
donor concentration is needed to realize a current density
of ZmA/um2 in response to an applied voltage of 1V?
(Note: Although the carrier mobilities change with doping
concentration, as a first approximation you may assume /i,
to be constant and use 1350 cm’/V - s, the value for intrinsic
silicon.)

3.10 Holes are being steadily injected into a region of n-type
silicon (connected to other devices, the details of which
are not important for this question). In the steady state, the
excess-hole concentration profile shown in Fig. P3.10 is
established in the n-type silicon region. Here “excess” means
over and above the thermal-equilibrium concentration (in the
absence of hole injection), denoted p,,. If N, = 10'°/em’,
n,=15x10"/em’, D, = 12 em’/s, and W = 50 nm, find the
density of the current that will flow in the x direction.

A p,(x)
1 08 Pno .
n region

Pof —— — — — — —

=Y

0 w
Figure P3.10

3.11 Both the carrier mobility and the diffusivity decrease as
the doping concentration of silicon is increased. Table P3.11
provides a few data points for p, and w, versus doping
concentration. Use the Einstein relationship to obtain the
corresponding values for D, and D,

HIN = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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Table P3.11

Doping Concentration

(carriers/cm3) Mn (cmzlv .s)

2 2 2
Mp (cm™/V . s) D,, (cm™/s) D, (cm?/s)

Intrinsic 1350
10" 1200
10" 750
10" 380

480
400
260
160

Section 3.4: The pn Junction

3.12 Calculate the built-in voltage of a junction in which the
p and n regions are doped equally with 5 x 10" atoms/cm’.
Assume n; = 1.5 x 10"°/cm’. With the terminals left open,
what is the width of the depletion region, and how far does
it extend into the p and n regions? If the cross-sectional area
of the junction is 20 umz, find the magnitude of the charge
stored on either side of the junction.

3.13 If, for a particular junction, the acceptor concentration
is 10""/cm’ and the donor concentration is 10'6/cm3, find the
junction built-in voltage. Assume n, = 1.5 x 10"/cm’. Also,
find the width of the depletion region (W) and its extent in
each of the p and n regions when the junction terminals are
left open. Calculate the magnitude of the charge stored on
either side of the junction. Assume that the junction area is
100 pm’.

3.14 Estimate the total charge stored in a 0.1-pwm depletion
layer on one side of a 10-pm x 10-pwm junction. The doping
concentration on that side of the junction is 10"%/cm’.

3.15 In a pn junction for which N, > N,,, and the depletion
layer exists mostly on the shallowly doped side with W =
0.2 wm, find V, if N, = 10"/cm’. Also calculate Q, for the
case A =10 umz.

3.16 By how much does V, change if N, or N, is increased
by a factor of 10?

Section 3.5: The pn Junction with an Applied
Voltage

3.17 If a 3-V reverse-bias voltage is applied across the
junction specified in Problem 3.13, find W and Q,.

3.18 Show that for a pn junction reverse-biased with
a voltage V,, the depletion-layer width W and the

charge stored on either side of the junction, Q,, can be
expressed as

v,
W=, [1+
0

Q; =0y, [1+

:‘

where W, and Q,, are the values in equilibrium.

3.19 In a forward-biased pn junction show that the ratio
of the current component due to hole injection across the
junction to the component due to electron injection is
given by

D

4

_ Ln NA
Dn Lp ND

L,
In

Evaluate this ratio for the case N, = 10"/cm’, N, =
10°/em’, L, =5 pm, L, = 10 pm, D, = 10 cm’/s, and
D, =20 cm’/s, and hence find I, and I, for the case
in which the pn junction is conducting a forward current
I =100 nA.

3.20 Calculate I and the current / for V = 750 mV for
a pn junction for which N, = 10"/cm’, N, = 10'°/cm’,
A =100 umz, n,=1.5x IOIO/cm3, L,=5um,L, = 10 wm,
D,=10 cm’/s, and D,=18 cm’/s.

3.27 Assuming that the temperature dependence of /; arises
mostly because I is proportional to nf, use the expression for
n,;in Eq. (3.2) to determine the factor by which n? changesas T
changes from 300 K to 305 K. This will be approximately the
same factor by which /; changes for a 5°C rise in temperature.
What is the factor?

H - Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem



3.22 Ap'njunction is one in which the doping concentration
in the p region is much greater than that in the n region. In such
a junction, the forward current is mostly due to hole injection
across the junction. Show that

1~1, :Aqn?%(eva = 1)
‘p"'D
For the specific case in which N, = 10" /em”, D,=10 cm’/s,
L,=10 pm, and A = 10* umz, find /; and the voltage V
obtained when / = 1 mA. Assume operation at 300 K where
n=15x10"/cm’.

3.23 A pnjunction for which the breakdown voltage is 12 V
has a rated (i.e., maximum allowable) power dissipation of
0.25 W. What continuous current in the breakdown region
will raise the dissipation to half the rated value? If breakdown
occurs for only 10 ms in every 20 ms, what average breakdown
current is allowed?

Section 3.6: Capacitive Effects in the pn
Junction

3.24 For the pn junction specified in Problem 3.13, find C,,
and C; at V, =3 V.

3.25 For a particular junction for which C,, = 0.4 pF, V, =
0.75 V, and m = 1/3, find C at reverse-bias voltages of 1 V
and 10 V.

3.26 The junction capacitance C; can be thought of as that
of a parallel-plate capacitor and thus given by

Show that this approach leads to a formula identical to that
obtained by combining Egs. (3.43) and (3.45) [or equivalently,
by combining Eqs. (3.47) and (3.48)].

3.27 A pnjunction operating in the forward-bias region with
acurrent / of 1 mA is found to have a diffusion capacitance of
5 pF. What diffusion capacitance do you expect this junction

Problems 173

to have at / = 0.1 mA? What is the mean transit time for this
junction?

3.28 For the p' 7 junction specified in Problem 3.22, find T,
and calculate the excess minority-carrier charge and the value
of the diffusion capacitance at / = 0.1 mA.

#*3.29 A short-base diode is one where the widths of the p
and n regions are much smaller than L, and L, respectively.
As a result, the excess minority-carrier distribution in each
region is a straight line rather than the exponentials shown in
Fig. 3.12.

(a) For the short-base diode, sketch a figure corresponding
to Fig. 3.12 and assume as in Fig. 3.12 that N, > N,,.

(b) Following a derivation similar to that given in Section
3.5.2, show that if the widths of the p and n regions are
denoted W, and W, then

D D
1 :Aqni2 £ + “ <eVNT — 1)
[ (Wn _‘xn)ND (W _xl))NA }

P

and

2
1 (W —
oL Wn)
P 2 Dp 14
2
1w,
~>D 1,,, for W, > x,

P

(c) Also, assuming Q =~ Q,, I >~ 1, show that

Tr

C,=—I
d VT
where
1w
T, = —
2D,

(d) If adesigner wishes to limit C, to 8 pF at / = 1 mA, what
should W, be? Assume D, =10 cm’/s.

HI = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
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IN THIS CHAPTER YOU WILL LEARN

1. The characteristics of the ideal diode and how to analyze and design circuits
containing multiple ideal diodes together with resistors and dc sources to realize
useful and interesting nonlinear functions.

2. The details of the i—v characteristic of the junction diode (which was derived in
Chapter 3) and how to use it to analyze diode circuits operating in the various bias
regions: forward, reverse, and breakdown.

3. Asimple but effective model of the diode i-v characteristic in the
forward direction: the constant-voltage-drop model.

4. A powerful technique for the application and modeling of the diode (and in later
chapters, transistors): dc-biasing the diode and modeling its operation for small
signals around the dc operating point by means of the small-signal model.

5. The use of a string of forward-biased diodes and of diodes operating in the
breakdown region (zener diodes), to provide constant dc voltages (voltage regulators).

6. Application of the diode in the design of rectifier circuits, which convert ac voltages to
dc as needed for powering electronic equipment.

7. A number of other practical and important applications of diodes.

Introduction

In Chapters 1 and 2 we dealt almost entirely with linear circuits; any nonlinearity, such as that
introduced by amplifier output saturation, was treated as a problem to be solved by the circuit
designer. However, there are many other signal-processing functions that can be implemented
only by nonlinear circuits. Examples include the generation of dc voltages from the ac power
supply, and the generation of signals of various waveforms (e.g., sinusoids, square waves,
pulses). Also, digital logic and memory circuits constitute a special class of nonlinear circuits.

The simplest and most fundamental nonlinear circuit element is the diode. Just like a
resistor, the diode has two terminals; but unlike the resistor, which has a linear (straight-line)
relationship between the current flowing through it and the voltage appearing across it, the
diode has a nonlinear i—v characteristic.

This chapter is concerned with the study of diodes. In order to understand the essence
of the diode function, we begin with a fictitious element, the ideal diode. We then introduce
the silicon junction diode, explain its terminal characteristics, and provide techniques for the
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analysis of diode circuits. The latter task involves the important subject of device modeling.
Our study of modeling the diode characteristics will lay the foundation for our study of
modeling transistor operation in the next three chapters.

Of the many applications of diodes, their use in the design of rectifiers (which convert
ac to dc) is the most common. Therefore we shall study rectifier circuits in some detail and
briefly look at a number of other diode applications. Further nonlinear circuits that utilize
diodes and other devices will be found throughout the book, but particularly in Chapter 18.

The junction diode is nothing more than the pn junction we studied in Chapter 3, and most
of this chapter is concerned with the study of silicon pn-junction diodes. In the last section,
however, we briefly consider some specialized diode types, including the photodiode and the
light-emitting diode.

4.1 The Ideal Diode

4.1.1 Current-Voltage Characteristic

The ideal diode may be considered to be the most fundamental nonlinear circuit element. Itis a
two-terminal device having the circuit symbol of Fig. 4.1(a) and the i—v characteristic shown
in Fig. 4.1(b). The terminal characteristic of the ideal diode can be interpreted as follows: If
a negative voltage (relative to the reference direction indicated in Fig. 4.1a) is applied to the
diode, no current flows and the diode behaves as an open circuit (Fig. 4.1¢). Diodes operated
in this mode are said to be reverse biased, or operated in the reverse direction. An ideal
diode has zero current when operated in the reverse direction and is said to be cut off, or
simply off.

On the other hand, if a positive current (relative to the reference direction indicated in
Fig. 4.1(a) is applied to the ideal diode, zero voltage drop appears across the diode. In other
words, the ideal diode behaves as a short circuit in the forward direction (Fig. 4.1d); it passes
any current with zero voltage drop. A forward-biased diode is said to be turned on, or
simply on.

From the above description it should be noted that the external circuit must be designed to
limit the forward current through a conducting diode, and the reverse voltage across a cutoff
diode, to predetermined values. Figure 4.2 shows two diode circuits that illustrate this point.
In the circuit of Fig. 4.2(a) the diode is obviously conducting. Thus its voltage drop will be
zero, and the current through it will be determined by the +10-V supply and the 1-k€2 resistor
as 10 mA. The diode in the circuit of Fig. 4.2(b) is obviously cut off, and thus its current will
be zero, which in turn means that the entire 10-V supply will appear as reverse bias across
the diode.

The positive terminal of the diode is called the anode and the negative terminal the
cathode, a carryover from the days of vacuum-tube diodes. The i—v characteristic of the
ideal diode (conducting in one direction and not in the other) should explain the choice of its
arrow-like circuit symbol.

As should be evident from the preceding description, the i—v characteristic of the ideal
diode is highly nonlinear; although it consists of two straight-line segments, they are at 90° to
one another. A nonlinear curve that consists of straight-line segments is said to be piecewise
linear. If a device having a piecewise-linear characteristic is used in a particular application
in such a way that the signal across its terminals swings along only one of the linear segments,
then the device can be considered a linear circuit element as far as that particular circuit
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Figure 4.1 The ideal diode: (a) diode circuit symbol; (b) i—v characteristic; (c) equivalent circuit in the
reverse direction; (d) equivalent circuit in the forward direction.

+10V +10V

1 kQ 1 kQ
10 mA | \llO mA
\ + +
ov 10V
— = Figure 4.2 The two modes of operation of ideal diodes and the
use of an external circuit to limit (a) the forward current and (b) the
(a) (b) reverse voltage.

application is concerned. On the other hand, if signals swing past one or more of the break
points in the characteristic, linear analysis is no longer possible.

4.1.2 A Simple Application: The Rectifier

A fundamental application of the diode, one that makes use of its severely nonlinear i—v curve,
is the rectifier circuit shown in Fig. 4.3(a). The circuit consists of the series connection of a
diode D and a resistor R. Let the input voltage v, be the sinusoid shown in Fig. 4.3(b), and
assume the diode to be ideal. During the positive half-cycles of the input sinusoid, the positive
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v, will cause current to flow through the diode in its forward direction. It follows that the
diode voltage v,, will be very small—ideally zero. Thus the circuit will have the equivalent
shown in Fig. 4.3(c), and the output voltage v, will be equal to the input voltage v,. On the
other hand, during the negative half-cycles of v,, the diode will not conduct. Thus the circuit
will have the equivalent shown in Fig. 4.3(d), and v,, will be zero. Thus the output voltage
will have the waveform shown in Fig. 4.3(e). Note that while v, alternates in polarity and has
a zero average value, v, is unidirectional and has a finite average value or a dc component.
Thus the circuit of Fig. 4.3(a) rectifies the signal and hence is called a rectifier. It can be used
to generate dc from ac. We will study rectifier circuits in Section 4.5.

U A

~

(b)
Yo A
+up=0-— N
o |2
v Ip RS w=1 -
7 ¢» (0} 1 0 >
o t
1 °
= ;=0
(©) (e)
+ v -
- "
Uy Ip = 0 R Vo = 0
r .
—= ;=0
(d)

Figure 4.3 (a) Rectifier circuit. (b) Input waveform. (¢) Equivalent circuit when v, > 0. (d) Equivalent circuit
when v, < 0. (¢) Output waveform.
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EXERCISES

4.1 For the circuit in Fig. 4.3(a), sketch the transfer characteristic v,, versus v,.
Ans. See Fig. E4.1

Vo A

Figure E4.1

4.2 For the circuit in Fig. 4.3(a), sketch the waveform of v,,.
Ans. v, = v, — v,, resulting in the waveform in Fig. E4.2

Up A
O A
/ |
Vi
Figure E4.2

4.3 In the circuit of Fig. 4.3(a), let v, have a peak value of 10 V and R = 1 k2. Find the peak value of i,
and the dc component of v,,. (Hint: The average value of half-sine waves is V, /rr.)
Ans. 10mA; 3.18 V




180 Chapter4 Diodes

Example 4.1

Figure 4.4(a) shows a circuit for charging a 12-V battery. If v, is a sinusoid with 24-V peak amplitude,
find the fraction of each cycle during which the diode conducts. Also, find the peak value of the diode
current and the maximum reverse-bias voltage that appears across the diode.

a2 /\“‘2‘”“‘7\(
NO) v / /\\ //\\

|< 26 >l

(a) (b)

Figure 4.4 Circuit and waveforms for Example 4.1.

Solution
The diode conducts when vy exceeds 12 V, as shown in Fig. 4.4(b). The conduction angle is 260, where 0
is given by

24cosf =12

Thus 6 = 60° and the conduction angle is 120°, or one-third of a cycle.
The peak value of the diode current is given by

24 —12

= =0.12A
100

The maximum reverse voltage across the diode occurs when v is at its negative peak and is equal to
24+12=36V.

4.1.3 Another Application: Diode Logic Gates

Diodes together with resistors can be used to implement digital logic functions. Figure 4.5
shows two diode logic gates. To see how these circuits function, consider a positive-logic
system in which voltage values close to 0 V correspond to logic O (or low) and voltage values
close to +5 V correspond to logic 1 (or high). The circuit in Fig. 4.5(a) has three inputs, v,,
vy, and v.. It is easy to see that diodes connected to +5-V inputs will conduct, thus clamping
the output v, to a value equal to 45 V. This positive voltage at the output will keep the diodes
whose inputs are low (around 0 V) cut off. Thus the output will be high if one or more of the
inputs are high. The circuit therefore implements the logic OR function, which in Boolean
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+5V
o > A
R3
v <

co—Pb—9¢——o
Uy O————n—*‘
R
) Up o—n———«——o Uy
(@) (b)

Figure 4.5 Diode logic gates: (a) OR gate; (b) AND gate (in a positive-logic system).
notation is expressed as
Y=A+B+C

Similarly, the reader is encouraged to show that using the same logic system mentioned
above, the circuit of Fig. 4.5(b) implements the logic AND function,

Y=A-B-C

Example 4.2

Assuming the diodes to be ideal, find the values of 7 and V in the circuits of Fig. 4.6.

+10V +10°V

-10V -0V
@ (b)

Figure 4.6 Circuits for Example 4.2.
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Example 4.2 continued

Solution

In these circuits it might not be obvious at first sight whether none, one, or both diodes are conducting. In
such a case, we make a plausible assumption, proceed with the analysis, and then check whether we end up
with a consistent solution. For the circuit in Fig. 4.6(a), we shall assume that both diodes are conducting.
It follows that V, = 0 and V = 0. The current through D, can now be determined from

100
L= ——" —1mA
2= "o o

Writing a node equation at B,

— (=1

results in / = 1 mA. Thus D, is conducting as originally assumed, and the final result is / = 1 mA and
V=0V.

For the circuit in Fig. 4.6(b), if we assume that both diodes are conducting, then V, =0 and V = 0.
The current in D, is obtained from

10—0
Iy =—5—=2mA

The node equation at B is

0—(—10)
I+2=—"—
* 10
which yields / = —1 mA. Since this is not possible, our original assumption is not correct. We start again,

assuming that D, is off and D, is on. The current /,,, is given by

10— (—10
I,= % =133mA

and the voltage at node B is

V,=—10+10x 1.33 = +3.3V

Thus D, is reverse biased as assumed, and the final resultis / =0and V =3.3 V.
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4.4 Find the values of I and V in the circuits shown in Fig. E4.4.

+5V +5V = =
+ +
v
2.5 kQ 2.5 kQ , - , B
1¢ I ¢ ¢ ¢
+ +
2.5 k0 2.5k
14 14
= = -5V -5V
(@) (b) © ()
+5V
+3 vV o—DbH—— A
+2Vo—P o
+ 1k $
<
+1V °—D|—¢ / w
vV +3vVvo—K—¢——o
< +
1 kQ 4:
) 2Vo—K—4 V¥
< ave—K— =
©)] (f)

Figure E4.4

Ans. (a)2mA,0V;(b)OmA,5V;(c)0mA,5V;(d)2mA,0V; () 3mA, +3V;(H)4mA, +1V

4.5 Figure E4.5 shows a circuit for an ac voltmeter. It utilizes a moving-coil meter that gives a full-scale
reading when the average current flowing through it is 1 mA. The moving-coil meter has a 50-Q
resistance.
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Find the value of R that results in the meter indicating a full-scale reading when the input sine-wave
voltage v, is 20 V peak-to-peak. (Hint: The average value of half-sine waves is V /m.)
Ans. 3.133kQ

Diodes

R
+
Moving-coil
meter
Figure E4.5

4.2 Terminal Characteristics of Junction Diodes

The most common implementation of the diode utilizes a pn junction. We have studied the
physics of the pn junction and derived its i—v characteristic in Chapter 3. That the pn junction
is used to implement the diode function should come as no surprise: the pn junction can conduct
substantial current in the forward direction and almost no current in the reverse direction. In
this section we study the i—v characteristic of the pn junction diode in detail in order to prepare
ourselves for diode circuit applications.

Figure 4.7 shows the i—v characteristic of a silicon junction diode. The same characteristic
is shown in Fig. 4.8 with some scales expanded and others compressed to reveal details. Note
that the scale changes have resulted in the apparent discontinuity at the origin.

As indicated, the characteristic curve consists of three distinct regions:

1. The forward-bias region, determined by v > 0
2. The reverse-bias region, determined by v <0
3. The breakdown region, determined by v < — V.

These three regions of operation are described in the following sections.

4.2.1 The Forward-Bias Region

The forward-bias—or simply forward—region of operation is entered when the terminal
voltage v is positive. In the forward region the i—v relationship is closely approximated by

i=L(e" —1) (4.1)

In this equation’ 1. s 1s a constant for a given diode at a given temperature. A formula for /; in
terms of the diode’s physical parameters and temperature was given in Eq. (3.41). The current

"Equation (4.1), the diode equation, is sometimes written to include a constant 7 in the exponential,
. olnVy
i=I(e —1)
with n having a value between 1 and 2, depending on the material and the physical structure of the

diode. Diodes using the standard integrated-circuit fabrication process exhibit 7 =1 when operated under
normal conditions. For simplicity, we shall use n = 1 throughout this book, unless otherwise specified.
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il

<y

Figure 4.7 The i—v characteristic of a silicon junction diode.

|
Forward |
|
Compressed |
—Vax scale | o
‘ 0 : 07V v
| 05V
|
Breakdown | | Reverse
|
I

Expanded scale

Figure 4.8 The diode i—v relationship with some scales expanded and others compressed in order to
reveal details.
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I is usually called the saturation current (for reasons that will become apparent shortly).
Another name for /g, and one that we will occasionally use, is the scale current. This name
arises from the fact that I is directly proportional to the cross-sectional area of the diode.
Thus doubling of the junction area results in a diode with double the value of /¢ and, as the
diode equation indicates, double the value of current i for a given forward voltage v. For
“small-signal” diodes, which are small-size diodes intended for low-power applications, I is
on the order of 10~ A. The value of I s 1s, however, a very strong function of temperature.
As a rule of thumb, /; doubles in value for every 5°C rise in temperature.
The voltage V, in Eq. (4.1) is a constant called the thermal voltage and is given by

kT
> Vi=— 4.2)
q
where
k = Boltzmann’s constant = 8.62 x 107" eV/K = 1.38 x 10> joules/kelvin
T = the absolute temperature in kelvins = 273 4 temperature in °C
g = the magnitude of electronic charge = 1.60 x 10~" coulomb
Substituting k = 8.62 x 10~ eV/K into Eq. (4.2) gives
V; =0.0862T, mV (4.2a)

Thus, at room temperature (20°C) the value of V; is 25.3 mV. In rapid approximate circuit
analysis we shall use V, ~ 25 mV at room temperature.”

For appreciable current i in the forward direction, specifically for i > I, Eq. (4.1) can be
approximated by the exponential relationship

> i~ e 4.3)

This relationship can be expressed alternatively in the logarithmic form

> 0=V, In— (4.4)
I
where In denotes the natural (base e) logarithm.

The exponential relationship of the current i to the voltage v holds over many decades
of current (a span of as many as seven decades—i.e., a factor of 10'—can be found). This
is quite a remarkable property of junction diodes, one that is also found in bipolar junction
transistors and that has been exploited in many interesting applications.

Let us consider the forward i—v relationship in Eq.(4.3) and evaluate the current 7,
corresponding to a diode voltage V:

I, = Isev‘ Wy
Similarly, if the voltage is V,, the diode current 7, will be

A A
I, =1Ie>

A slightly higher ambient temperature (25°C or so) is usually assumed for electronic equipment
operating inside a cabinet. At this temperature, V, >~ 25.8 mV. Nevertheless, for the sake of simplicity and
to promote rapid circuit analysis, we shall use the more arithmetically convenient value of V,, >~ 25 mV
throughout this book.
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These two equations can be combined to produce

L _ v
1

which can be rewritten as

I
%—mzwmf

1

or, in terms of base-10 logarithms,
1,
V,—V, =23V, log A 4.5)
1

This equation simply states that for a decade (factor of 10) change in current, the diode voltage
drop changes by 2.3V, which is approximately 60 mV. This also suggests that the diode i—v
relationship is most conveniently plotted on semilog paper. Using the vertical, linear axis for
v and the horizontal, log axis for 7, one obtains a straight line with a slope of 60 mV per decade
of current.

A glance at the i—v characteristic in the forward region (Fig. 4.8) reveals that the current is
negligibly small for v smaller than about 0.5 V. This value is usually referred to as the cut-in
voltage. It should be emphasized, however, that this apparent threshold in the characteristic is
simply a consequence of the exponential relationship. Another consequence of this relationship
is the rapid increase of i. Thus, for a “fully conducting” diode, the voltage drop lies in a narrow
range, approximately 0.6 V to 0.8 V. This gives rise to a simple “model” for the diode where
it is assumed that a conducting diode has approximately a 0.7-V drop across it. Diodes with
different current ratings (i.e., different areas and correspondingly different /) will exhibit the
0.7-V drop at different currents. For instance, a small-signal diode may be considered to have
a0.7-V drop at i = 1 mA, while a higher-power diode may have a 0.7-V drop ati =1 A. We
will study the topics of diode-circuit analysis and diode models in the next section.

Example 4.3

A silicon diode said to be a 1-mA device displays a forward voltage of 0.7 V at a current of 1 mA.
Evaluate the junction scaling constant /;. What scaling constants would apply for a 1-A diode of the same

manufacture that conducts 1 A at 0.7 V?

Solution
Since

. vl
= T
i=le

then

187
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Example 4.3 continued

For the 1-mA diode:

—3 —700/25

I,=10 "¢

=69x107"°A

The diode conducting 1 A at 0.7 V corresponds to one-thousand 1-mA diodes in parallel with a total

junction area 1000 times greater. Thus /g is also 1000 times greater,

I,=69x10"" A

Ans.

Since both /; and V, are functions of temperature, the forward i—v characteristic varies
with temperature, as illustrated in Fig. 4.9. At a given constant diode current, the voltage drop
across the diode decreases by approximately 2 mV for every 1°C increase in temperature.
The change in diode voltage with temperature has been exploited in the design of electronic

thermometers.

T, T,

—2mV/°C

Figure 4.9 Temperature dependence of the
diode forward characteristic. At a constant
current, the voltage drop decreases by approx-
imately 2 mV for every 1°C increase in
temperature.

4.6 Find the change in diode voltage if the current changes from 0.1 mA to 10 mA.
Ans. 120 mV

4.7 Asilicon junction diode has v =0.7 V ati = 1 mA. Find the voltage drop ati = 0.1 mA and i = 10 mA.

0.64V;0.76 V

4.8 Using the fact that a silicon diode has I, = 10~"* A at 25°C and that I, increases by 15% per °C rise in
temperature, find the value of /; at 125°C.
Ans. 1.17 x 10° A
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4.2.2 The Reverse-Bias Region

The reverse-bias region of operation is entered when the diode voltage v is made negative.
Equation (4.1) predicts that if v is negative and a few times larger than V; (25 mV) in
magnitude, the exponential term becomes negligibly small compared to unity, and the diode
current becomes

i~ =1

That is, the current in the reverse direction is constant and equal to /. This constancy is the
reason behind the term saturation current.

Real diodes exhibit reverse currents that, though quite small, are much larger than /.
For instance, a small-signal diode whose I is on the order of 10™* A to 107" A could
show a reverse current on the order of 1 nA. The reverse current also increases somewhat
with the increase in magnitude of the reverse voltage. Note that because of the very small
magnitude of the current, these details are not clearly evident on the diode i—v characteristic
of Fig. 4.8.

A large part of the reverse current is due to leakage effects. These leakage currents are
proportional to the junction area, just as I is. Their dependence on temperature, however,
is different from that of /;. Thus, whereas /; doubles for every 5°C rise in temperature, the
corresponding rule of thumb for the temperature dependence of the reverse current is that it
doubles for every 10°C rise in temperature.

4.9 The diode in the circuit of Fig. E4.9 is a large high-current device whose reverse leakage is reasonably
independent of voltage. If V =1V at 20°C, find the value of V at 40°C and at 0°C.

+9V

-+

~

1 MQ

- Figure E4.9

Ans. 4V;0.25V
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4.2.3 The Breakdown Region

The third distinct region of diode operation is the breakdown region, which can be easily
identified on the diode i—v characteristic in Fig. 4.8. The breakdown region is entered when
the magnitude of the reverse voltage exceeds a threshold value that is specific to the particular
diode, called the breakdown voltage. This is the voltage at the “knee” of the i—v curve in
Fig. 4.8 and is denoted V,,, where the subscript Z stands for zener (see Section 3.5.3) and K
denotes knee.

As can be seen from Fig. 4.8, in the breakdown region the reverse current increases rapidly,
with the associated increase in voltage drop being very small. Diode breakdown is normally
not destructive, provided the power dissipated in the diode is limited by external circuitry to
a “safe” level. This safe value is normally specified on the device data sheets. It therefore is
necessary to limit the reverse current in the breakdown region to a value consistent with the
permissible power dissipation.

The fact that the diode i—v characteristic in breakdown is almost a vertical line enables it
to be used in voltage regulation. This subject will be studied in Section 4.5.

4.3 Modeling the Diode Forward Characteristic

Having studied the diode terminal characteristics we are now ready to consider the analysis of
circuits employing forward-conducting diodes. Figure 4.10 shows such a circuit. It consists of
adc source V), aresistor R, and a diode. We wish to analyze this circuit to determine the diode
voltage V,, and current I,,. To aid in our analysis, we need to represent the diode with a model.
There are a variety of diode models, of which we now know two: the ideal-diode model and
the exponential model. In the following discussion we shall assess the suitability of these two
models in various analysis situations. Also, we shall develop and comment on other models.
This material, besides being useful in the analysis and design of diode circuits, establishes
a foundation for the modeling of transistor operation that we will study in the next three
chapters.

4.3.1 The Exponential Model

The most accurate description of the diode operation in the forward region is provided by the
exponential model. Unfortunately, however, its severely nonlinear nature makes this model
the most difficult to use. To illustrate, let’s analyze the circuit in Fig. 4.10 using the exponential
diode model.

Assuming that V,,;, is greater than 0.5V or so, the diode current will be much greater
than g, and we can represent the diode i—v characteristic by the exponential relationship,

I
R 2

V, V . . A . . S
bp p Figure 4.10 A simple circuit used to illustrate the analysis of circuits in

which the diode is forward conducting.
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resulting in
I, =1, (4.6)

The other equation that governs circuit operation is obtained by writing a Kirchhoff loop
equation, resulting in

[, = 20" 4.7)

Assuming that the diode parameter [ is known, Eqgs. (4.6) and (4.7) are two equations in
the two unknown quantities /, and V,,. Two alternative ways for obtaining the solution are
graphical analysis and iterative analysis.

4.3.2 Graphical Analysis Using the Exponential Model

Graphical analysis is performed by plotting the relationships of Egs. (4.6) and (4.7) on the
i—v plane. The solution can then be obtained as the coordinates of the point of intersection
of the two graphs. A sketch of the graphical construction is shown in Fig. 4.11. The curve
represents the exponential diode equation (Eq. 4.6), and the straight line represents Eq. (4.7).
Such a straight line is known as the load line, a name that will become more meaningful
in later chapters. The load line intersects the diode curve at point Q, which represents the
operating point of the circuit. Its coordinates give the values of /,, and V,.

Graphical analysis aids in the visualization of circuit operation. However, the effort
involved in performing such an analysis, particularly for complex circuits, is too great to
be justified in practice.

iA
VDD
R Diode characteristic
0
(operating point)
p,F———
| Load line
| 1
: Slope = .
|
0 |

<Y

Vb Vop

Figure 4.11 Graphical analysis of the circuit in Fig. 4.10 using the exponential diode model.

4.3.3 Iterative Analysis Using the Exponential Model

Equations (4.6) and (4.7) can be solved using a simple iterative procedure, as illustrated in
the following example.

191
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Example 4.4

Determine the current /,, and the diode voltage V,, for the circuit in Fig. 4.10 with V,,, =5 V and R = 1 k2.
Assume that the diode has a current of 1 mA at a voltage of 0.7 V.
Solution

To begin the iteration, we assume that V,, = 0.7 V and use Eq. (4.7) to determine the current,

ID — VDD - VD

R
5-0.7
=43 mA

We then use the diode equation to obtain a better estimate for V,,. This can be done by employing Eq. (4.5),
namely,

12
V,—V,=2.3V,log T
1
Substituting 2.3V, = 60 mV, we have
12
V, =V, +0.06log i
1

Substituting V, = 0.7 V, I, = 1 mA, and I, = 4.3 mA results in V, = 0.738 V. Thus the results of the first
iteration are /,, = 4.3 mA and V,, = 0.738 V. The second iteration proceeds in a similar manner:

5-0.738
I, == =4262mA

V, =0.738 +0.061 4262

=0. .06log| ———

: 8743
=0.738V

Thus the second iteration yields /,, = 4.262 mA and V,, = 0.738 V. Since these values are very close to the

values obtained after the first iteration, no further iterations are necessary, and the solution is /, =4.262 mA
and V,=0.738 V.

4.3.4 The Need for Rapid Analysis

The iterative analysis procedure utilized in the example above is simple and yields accurate
results after two or three iterations. Nevertheless, there are situations in which the effort
and time required are still greater than can be justified. Specifically, if one is doing a
pencil-and-paper design of a relatively complex circuit, rapid circuit analysis is a necessity.
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Through quick analysis, the designer is able to evaluate various possibilities before deciding
on a suitable circuit design. To speed up the analysis process, one must be content with less
precise results. This, however, is seldom a problem, because the more accurate analysis can be
postponed until a final or almost-final design is obtained. Accurate analysis of the almost-final
design can be performed with the aid of a computer circuit-analysis program such as SPICE
(see Appendix B and the website). The results of such an analysis can then be used to further
refine or “fine-tune” the design.

To speed up the analysis process, we must find a simpler model for the diode forward
characteristic.

4.3.5 The Constant-Voltage-Drop Model

The simplest and most widely used diode model is the constant-voltage-drop model. This
model is based on the observation that a forward-conducting diode has a voltage drop that
varies in a relatively narrow range, say, 0.6 to 0.8 V. The model assumes this voltage to be
constant at a value, say, 0.7 V. This development is illustrated in Fig. 4.12.

The constant-voltage-drop model is the one most frequently employed in the initial phases
of analysis and design. This is especially true if at these stages one does not have detailed
information about the diode characteristics, which is often the case.

0.7V 0 0.7V
(@) (b)
i
-
O—
+
= Up
O—
i>0,0p=07V
©)

Figure 4.12 Development of the diode constant-voltage-drop model: (a) the exponential characteristic;
(b) approximating the exponential characteristic by a constant voltage, usually about 0.7 V; (¢) the resulting
model of the forward-conducting diodes.
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4.10 For the circuit in Fig. 4.10, find 1, and V,, for the case V,;,, =5V and R = 10 k2. Assume that the

D4.11

Finally, note that if we employ the constant-voltage-drop model to solve the problem in
Example 4.4, we obtain

V,=07V

and

V,p—0.7
R

5-07
=7 = 43 mA

I,=

which are not very different from the values obtained before with the more elaborate
exponential model.

4.3.6 The Ideal-Diode Model

In applications that involve voltages much greater than the diode voltage drop (0.6 V-0.8 V),
we may neglect the diode voltage drop altogether while calculating the diode current.
The result is the ideal-diode model, which we studied in Section 4.1. For the circuit in
Example 4.4 (i.e., Fig. 4.10 with V,,;, =5 V and R=1 k), utilization of the ideal-diode model
leads to

V,=0V

wm <O

-0

Iy="1—=5mA

which for a very quick analysis would not be bad as a gross estimate. However, with almost no
additional work, the 0.7-V-drop model yields much more realistic results. We note, however,
that the greatest utility of the ideal-diode model is in determining which diodes are on and
which are off in a multidiode circuit, such as those considered in Section 4.1.

diode has a voltage of 0.7 V at 1-mA current. Use (a) iteration and (b) the constant-voltage-drop
model with V,, =0.7 V.
Ans. (a) 0.43mA, 0.68 V; (b) 0.43 mA, 0.7V

Design the circuit in Fig. E4.11 to provide an output voltage of 2.4 V. Assume that the diodes
available have 0.7-V drop at 1 mA.
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+10V

Figure E4.11

Ans. R=139Q

4.12 Repeat Exercise 4.4 using the 0.7-V-drop model to obtain better estimates of / and V than those
found in Exercise 4.4 (using the ideal-diode model).
Ans. (a) 1.72mA, 0.7 V; (b) OmA, 5V; (c) 0mA, 5V; (d) 1.72mA, 0.7 V; (e) 2.3 mA, +2.3V;
(f)3.3mA, +1.7V

4.3.7 The Small-Signal Model

Consider the situation in Fig. 4.13(a), where a dc voltage V,, establishes a dc current 7,
through the series combination of a resistance R and a diode D. The resulting diode voltage is
denoted V,,. As mentioned above, values of /, and V,, can be obtained by solving the circuit
using the diode exponential characteristic or, much more quickly, approximate values can be
found using the diode constant-voltage-drop model.

Next, consider the situation of V,, undergoing a small change AV,,, as shown in
Fig. 4.13(b). As indicated, the current I, changes by an increment A/}, and the diode voltage
V,, changes by an increment AV,,. We wish to find a quick way to determine the values of
these incremental changes. Toward that end, we develop a “small-signal” model for the diode.

I I+ Al
R D R o D
+ +
Voo T D Vi AVop D Vp+ AV,
Vop '|' —
(a) (b)

Figure 4.13 (a) A simple diode circuit; (b) the situation when V,  changes by AV, .
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Tangent at Q

Bias point o -
Ip SN . W/Y /

Y

o
A
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| b

__/\_+______.____
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Figure 4.14 Development of the diode small-signal model.

Here the word signal emphasizes that in general, AV}, can be a time-varying quantity. The
qualifier “small” indicates that this diode model applies only when AV, is kept sufficiently
small, with “sufficiently” to be quantified shortly.

To develop the diode small-signal model, refer to Fig. 4.14. We express the voltage across
the diode as the sum of the dc voltage V), and the time-varying signal v, (),

up(t) =V +v,(t) (4.8)
Correspondingly, the total instantaneous diode current i,,(#) will be
ip(1) = L™ 4.9)
Substituting for v, from Eq. (4.8) gives
in () = Lo+ a)r
which can be rewritten

ip(1) =Ie"""r &%t (4.10)
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In the absence of the signal v,(#), the diode voltage is equal to V,,, and the diode current is /),
given by

I, =1, 4.11)
Thus, i, () in Eq. (4.10) can be expressed as
ip(t) = Iy (4.12)
Now if the amplitude of the signal v,(¢) is kept sufficiently small such that

Y (4.13)
Vr

then we may expand the exponential of Eq. (4.12) in a series and truncate the series after the
first two terms to obtain the approximate expression

(1) ~ ID(I + 3—) (4.14)

T

This is the small-signal approximation. It is valid for signals whose amplitudes are smaller
than about 5 mV (see Eq. 4.13, and recall that V,, =25 mV).3
From Eq. (4.14) we have

I
i) =1+ 2, (4.15)
Vi

Thus, superimposed on the dc current /,, we have a signal current component directly
proportional to the signal voltage v,. That is,

ip=1,+1, (4.16)
where

) I

i, = ijd 4.17)

The quantity relating the signal current i, to the signal voltage v, has the dimensions of
conductance, mhos (U), and is called the diode small-signal conductance. The inverse of
this parameter is the diode small-signal resistance, or incremental resistance, r,,

ry=—L (4.18)

Note that the value of r, is inversely proportional to the bias current /,,.

*For v, = 5mV, v,/V, = 0.2. Thus the next term in the series expansion of the exponential will be
% x 0.2° = 0.02, a factor of 10 lower than the linear term we kept.

197
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Additional insight into the small-signal approximation and the small-signal diode model
can be obtained by considering again the graphical construction in Fig. 4.14. Here the diode
is seen to be operating at a dc bias point Q characterized by the dc voltage V,, and the
corresponding dc current /,,. Superimposed on V,, we have a signal v, (), assumed (arbitrarily)
to have a triangular waveform.

It is easy to see that using the small-signal approximation is equivalent to assuming that
the signal amplitude is sufficiently small such that the excursion along the i—v curve is limited
to a short almost-linear segment. The slope of this segment, which is equal to the slope of the
tangent to the i—v curve at the operating point Q, is equal to the small-signal conductance.
The reader is encouraged to prove that the slope of the i—v curve at i = I, is equal to 1,/V,,
which is 1/r,; that is,

"
> r, = 1/[%] (4.19)
D iD:ID

From the preceding we conclude that superimposed on the quantities V,, and I, that define
the dc bias point, or quiescent point, of the diode will be the small-signal quantities v, ()
and i,(t), which are related by the diode small-signal resistance r, evaluated at the bias
point (Eq. 4.18). Thus the small-signal analysis can be performed separately from the dc bias
analysis, a great convenience that results from the linearization of the diode characteristics
inherent in the small-signal approximation. Specifically, after the dc analysis is performed, the
small-signal equivalent circuit is obtained by eliminating all dc sources (i.e., short-circuiting
dc voltage sources and open-circuiting dc current sources) and replacing the diode by its
small-signal resistance. Thus, for the circuitin Fig. 4.13(b), the dc analysis is obtained by using
the circuit in Fig. 4.13(a), while the incremental quantities Al;, and AV,, can be determined by
using the small-signal equivalent circuit shown in Fig. 4.15. The following example should
further illustrate the application of the small-signal model.

Al
R D

AV, AV, Figure 4.15 Circuit for determining the incremental

r, quantities Al and AV, for the circuit in Figure 4.13(b).

— Note that replacing the diode with its small-signal
resistance r, results in a linear circuit.

Example 4.5

Consider the circuit shown in Fig. 4.16(a) for the case in which R = 10 k2. The power supply V"' has
a dc value of 10V on which is superimposed a 60-Hz sinusoid of 1-V peak amplitude. (This “signal”
component of the power-supply voltage is an imperfection in the power-supply design. It is known as the
power-supply ripple. More on this later.) Calculate both the dc voltage of the diode and the amplitude of
the sine-wave signal appearing across it. Assume the diode to have a 0.7-V drop at 1-mA current.
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10V
[ D
R
v :
0 +
Vp Tq U
(a) (b) (©)

Figure 4.16 (a) Circuit for Example 4.5. (b) Circuit for calculating the dc operating point. (c) Small-signal
equivalent circuit.

Solution
Considering dc quantities only, we assume V,, >~ 0.7 V and calculate the diode dc current

_10-07

I,= =0.93 mA
10

Since this value is very close to 1 mA, the diode voltage will be very close to the assumed value of 0.7 V.
At this operating point, the diode incremental resistance r, is
Vr 25
=—=—=269Q
=T 093

The signal voltage across the diode can be found from the small-signal equivalent circuit in Fig. 4.16(c).
Here v, denotes the 60-Hz 1-V peak sinusoidal component of V', and v, is the corresponding signal across
the diode. Using the voltage divider rule provides the peak amplitude of v, as follows:

A r
v, (peak) =V, I _:rd
00269
10+0.0269

2.68 mV

Finally, we note that since this value is quite small, our use of the small-signal model of the diode is
justified.
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From the above we see that for a diode circuit that involves both dc and signal quantities,
a small-signal equivalent circuit can be obtained by eliminating the dc sources and replacing
each diode with its small-signal resistance r,. Such a circuit is linear and can be solved using
linear circuit analysis.

Finally, we note that while r, models the small-signal operation of the diode at low
frequencies, its dynamic operation is modeled by the capacitances C; and C,, which we
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studied in Section 3.6 and which also are small-signal parameters. A complete model of the
diode includes C; and C, in parallel with r,.

4.3.8 Use of the Diode Forward Drop in Voltage Regulation

A further application of the diode small-signal model is found in a popular diode application,
namely, the use of diodes to create a regulated voltage. A voltage regulator is a circuit whose
purpose is to provide a constant dc voltage between its output terminals. The output voltage
is required to remain as constant as possible in spite of (a) changes in the load current drawn
from the regulator output terminal and (b) changes in the dc power-supply voltage that feeds
the regulator circuit. Since the forward-voltage drop of the diode remains almost constant
at approximately 0.7 V while the current through it varies by relatively large amounts, a
forward-biased diode can make a simple voltage regulator. For instance, we have seen in
Example 4.5 that while the 10-V dc supply voltage had a ripple of 2 V peak-to-peak (a =10%
variation), the corresponding ripple in the diode voltage was only about +2.7 mV (a £0.4%
variation). Regulated voltages greater than 0.7 V can be obtained by connecting a number
of diodes in series. For example, the use of three forward-biased diodes in series provides a
voltage of about 2 V. One such circuit is investigated in the following example, which utilizes
the diode small-signal model to quantify the efficacy of the voltage regulator that is realized.

Example 4.6

Consider the circuit shown in Fig. 4.17. A string of three diodes is used to provide a constant voltage of
about 2.1 V. We want to calculate the percentage change in this regulated voltage caused by (a) a £10%
change in the power-supply voltage, and (b) connection of a 1-k€2 load resistance.

101V

R=1kQ

1?1; =] 1 ](Shl

(%)

= = Figure 4.17 Circuit for Example 4.6.

Solution
With no load, the nominal value of the current in the diode string is given by

_10-21
1

1 =7.9mA
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Thus each diode will have an incremental resistance of

T
Thus,
25
r,==—=32Q
7.9

The three diodes in series will have a total incremental resistance of
r=3r,=9.6 Q2

This resistance, along with the resistance R, forms a voltage divider whose ratio can be used to calculate
the change in output voltage due to a £10% (i.e., =1-V) change in supply voltage. Thus the peak-to-peak
change in output voltage will be

0.0096
' —»

Av, =2 =
r+R 0.0096 + 1

=19 mV peak-to-peak

That is, corresponding to the +1-V (£10%) change in supply voltage, the output voltage will change by
4+9.5 mV or £0.5%. Since this implies a change of about 3.2 mV per diode, our use of the small-signal
model is justified.

When aload resistance of 1 k€2 is connected across the diode string, it draws a current of approximately
2.1 mA. Thus the current in the diodes decreases by 2.1 mA, resulting in a decrease in voltage across the
diode string given by

Av,=—-21xr=-2.1x9.6=-20mV

Since this implies that the voltage across each diode decreases by about 6.7 mV, our use of the small-signal
model is not entirely justified. Nevertheless, a detailed calculation of the voltage change using the
exponential model results in Av,= — 23 mV, which is not too different from the approximate value
obtained using the incremental model.

4.13 Find the value of the diode small-signal resistance r, at bias currents of 0.1 mA, 1 mA, and 10 mA.
Ans. 250 ;25 Q;2.5Q

4.14 Consider a diode biased at 1 mA. Find the change in current as a result of changing the voltage by
(a) 10 mV, (b) =5 mV, (¢) +5 mV, and (d) +10 mV. In each case, do the calculations (i) using the
small-signal model and (ii) using the exponential model.
Ans. (a) =0.40,-0.33 mA; (b) —0.20, -0.18 mA; (c) +0.20, +-0.22 mA; (d) +0.40, 4-0.49 mA

D4.15 Design the circuit of Fig. E4.15 so that V, =3 V when I; =0, and V,, changes by 20 mV per 1 mA

of load current.
(a) Use the small-signal model of the diode to find the value of R.
(b) Specify the value of /; of each of the diodes.
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(c) For this design, use the diode exponential model to determine the actual change in V,, when
a current /, = 1 mA is drawn from the regulator.

+15V

R

Vo
—
1,
= Figure E4.15

Ans. (a) R=2.4k; (b) [[=4.7x 107" A; (c) 23 mV

4.4 Operation in the Reverse Breakdown
Region—Zener Diodes

The very steep i—v curve that the diode exhibits in the breakdown region (Fig. 4.8) and the
almost-constant voltage drop that this indicates suggest that diodes operating in the breakdown
region can be used in the design of voltage regulators. From the previous section, the reader
will recall that voltage regulators are circuits that provide a constant dc output voltage in the
face of changes in their load current and in the system power-supply voltage. This in fact turns
out to be an important application of diodes operating in the reverse breakdown region, and
special diodes are manufactured to operate specifically in the breakdown region. Such diodes
are called breakdown diodes or, more commonly, as noted earlier, zener diodes.

Figure 4.18 shows the circuit symbol of the zener diode. In normal applications of zener
diodes, current flows into the cathode, and the cathode is positive with respect to the anode.
Thus I, and V, in Fig. 4.18 have positive values.

Izi .
Vz

Figure 4.18 Circuit symbol for a zener diode.
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4.4.1 Specifying and Modeling the Zener Diode

Figure 4.19 shows details of the diode i—v characteristic in the breakdown region. We observe
that for currents greater than the knee current /,, (specified on the data sheet of the zener
diode), the i—v characteristic is almost a straight line. The manufacturer usually specifies
the voltage across the zener diode V,, at a specified test current, /.. We have indicated these
parameters in Fig. 4.19 as the coordinates of the point labeled Q. Thus a 6.8-V zener diode
will exhibit a 6.8-V drop at a specified test current of, say, 10 mA. As the current through the
zener deviates from /,;, the voltage across it will change, though only slightly. Figure 4.19
shows that corresponding to current change A[ the zener voltage changes by AV, which is
related to Al by

AV =r.Al

where r, is the inverse of the slope of the almost-linear i—v curve at point Q. Resistance r, is
the incremental resistance of the zener diode at operating point Q. It is also known as the
dynamic resistance of the zener, and its value is specified on the device data sheet. Typically,
r, 1s in the range of a few ohms to a few tens of ohms. Obviously, the lower the value of r,
is, the more constant the zener voltage remains as its current varies, and thus the more ideal
its performance becomes in the design of voltage regulators. In this regard, we observe from
Fig. 4.19 that while r, remains low and almost constant over a wide range of current, its value
increases considerably in the vicinity of the knee. Therefore, as a general design guideline,
one should avoid operating the zener in this low-current region.

Zener diodes are fabricated with voltages V, in the range of a few volts to a few hundred
volts. In addition to specifying V, (at a particular current /), r,, and I, the manufacturer

<Y

_IZK

——————————— —1I,r (test current)

AV =Alr,

Figure 4.19 The diode i—v characteristic with the breakdown region shown in some detail.
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1
—
+ 1

V7 0

Vz

Figure 4.20 Model for the zener diode.

also specifies the maximum power that the device can safely dissipate. Thus a 0.5-W, 6.8-V
zener diode can operate safely at currents up to a maximum of about 70 mA.

The almost-linear i—v characteristic of the zener diode suggests that the device can be
modeled as indicated in Fig. 4.20. Here V,, denotes the point at which the straight line of
slope 1/r, intersects the voltage axis (refer to Fig. 4.19). Although V,, is shown in Fig. 4.19
to be slightly different from the knee voltage V,, in practice their values are almost equal.
The equivalent circuit model of Fig. 4.20 can be analytically described by

V,=Vyu+rl, (4.20)

and it applies for I, > I, and, obviously, V, > V.

4.4.2 Use of the Zener as a Shunt Regulator

We now illustrate, by way of an example, the use of zener diodes in the design of shunt
regulators, so named because the regulator circuit appears in parallel (shunt) with the load.

Example 4.7

The 6.8-V zener diode in the circuit of Fig. 4.21(a) is specified to have V, =6.8 Vat [, =5mA, r, =20 Q,
and I, = 0.2 mA. The supply voltage V" is nominally 10 V but can vary by £=1 V.

(a) Find V,, with no load and with V™ at its nominal value.

(b) Find the change in V, resulting from the 4-1-V change in V. Note that (A V, /A V+), usually expressed
in mV/V, is known as line regulation.

(c) Find the change in V,, resulting from connecting a load resistance R, that draws a current /, = 1 mA,
and hence find the load regulation (AV,/Al,) in mV/mA.

(d) Find the change in V, when R, =2 k€.

(e) Find the value of V, when R, = 0.5 k2.

(f) What is the minimum value of R, for which the diode still operates in the breakdown region?
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V' (10 =1V) v

R = 0.5 kQ R i,

(a) (b)

Figure 4.21 (a) Circuit for Example 4.7. (b) The circuit with the zener diode replaced with its equivalent circuit
model.

Solution

First we must determine the value of the parameter V,,, of the zener diode model. Substituting V, = 6.8 V,
I, =5mA, and r, = 20 Q in Eq. (4.20) yields V,, = 6.7 V. Figure 4.21(b) shows the circuit with the zener
diode replaced with its model.

(a) With no load connected, the current through the zener is given by

_ V+_Vzo
- R+r,

_10-67
©0.540.02

=

=6.35mA

Thus,
Vo=V +1,r.
=6.746.35x0.02=6.83V
(b) For a +1-V change in V™, the change in output voltage can be found from

rZ

AV,=AV"
R—+r.

==1 =138.5mV

20
X
500+ 20
Thus,

Line regulation = 38.5 mV/V
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Example 4.7 continued

(c) When a load resistance R, that draws a load current /, = 1 mA is connected, the zener current will
decrease by 1 mA. The corresponding change in zener voltage can be found from

AV, =r.Al
=20x —1=-20mV

Thus the load regulation is

. AV,
Load regulation = 7 = —20 mV/mA
L

(d) When a load resistance of 2 k2 is connected, the load current will be approximately 6.8 V/2kQ =
3.4 mA. Thus the change in zener current will be Al, = —3.4 mA, and the corresponding change in zener
voltage (output voltage) will thus be

AV, =rAlI,
=20x —3.4=—-68mV

This value could have been obtained by multiplying the load regulation by the value of 7, (3.4 mA).
(e) An R, of 0.5 k2 would draw a load current of 6.8/0.5=13.6 mA. This is not possible, because the
current / supplied through R is only 6.4 mA (for V* = 10 V). Therefore, the zener must be cut off. If this

is indeed the case, then V,, is determined by the voltage divider formed by R, and R (Fig. 4.21a),
R
V, = vt L

R+R,
05
0.5+05

=10 5V

Since this voltage is lower than the breakdown voltage of the zener, the diode is indeed no longer operating
in the breakdown region.

(f) For the zener to be at the edge of the breakdown region, I, =I,, =0.2mA and V, >V, >~ 6.7 V. At
this point the lowest (worst-case) current supplied through R is (9 — 6.7)/0.5 = 4.6 mA, and thus the load
current is 4.6 —0.2 = 4.4 mA. The corresponding value of R, is

6.7
R, = — ~15kQ
44

4.4.3 Temperature Effects

The dependence of the zener voltage V, on temperature is specified in terms of its temperature
coefficient TC, or temco as it is commonly known, which is usually expressed in mV/°C.
The value of TC depends on the zener voltage, and for a given diode the TC varies with the
operating current. Zener diodes whose V, are lower than about 5 V exhibit a negative TC. On
the other hand, zeners with higher voltages exhibit a positive TC. The TC of a zener diode
with a V, of about 5 V can be made zero by operating the diode at a specified current. Another
commonly used technique for obtaining a reference voltage with low temperature coefficient
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is to connect a zener diode with a positive temperature coefficient of about 2 mV/°C in series
with a forward-conducting diode. Since the forward-conducting diode has a voltage drop
of ~0.7V and a TC of about —2 mV/°C, the series combination will provide a voltage of
(V, 4+ 0.7) with a TC of about zero.
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model?
Ans. 9.75V;10.5V;95V

R. What is the maximum power dissipation of the zener diode?
Ans. 470 2; 112 mW

Ans. 5.1 V;33.8 mV/V; -7 mV/mA

4.16 A zener diode whose nominal voltage is 10 V at 10 mA has an incremental resistance of 50 2. What
voltage do you expect if the diode current is halved? Doubled? What is the value of V,, in the zener

4.17 A zener diode exhibits a constant voltage of 5.6 V for currents greater than five times the knee current.
1, is specified to be 1 mA. The zener is to be used in the design of a shunt regulator fed from a 15-V
supply. The load current varies over the range of 0 mA to 15 mA. Find a suitable value for the resistor

4.18 A shunt regulator utilizes a zener diode whose voltage is 5.1 V at a current of 50 mA and whose
incremental resistance is 7 2. The diode is fed from a supply of 15-V nominal voltage through a
200-€2 resistor. What is the output voltage at no load? Find the line regulation and the load regulation.

4.4.4 A Final Remark

Though simple and useful, zener diodes have lost a great deal of their popularity in recent
years. They have been virtually replaced in voltage-regulator design by specially designed
integrated circuits (ICs) that perform the voltage-regulation function much more effectively
and with greater flexibility than zener diodes.

4.5 Rectifier Circuits

One of the most important applications of diodes is in the design of rectifier circuits. A
diode rectifier forms an essential building block of the dc power supplies required to power
electronic equipment. A block diagram of such a power supply is shown in Fig. 4.22. As
indicated, the power supply is fed from the 120-V (rms) 60-Hz ac line, and it delivers a dc
voltage V,, (usually in the range of 4 V to 20 V) to an electronic circuit represented by the
load block. The dc voltage V,, is required to be as constant as possible in spite of variations
in the ac line voltage and in the current drawn by the load.

The first block in a dc power supply is the power transformer. It consists of two separate
coils wound around an iron core that magnetically couples the two windings. The primary
winding, having N, turns, is connected to the 120-V ac supply, and the secondary winding,
having N, turns, is connected to the circuit of the dc power supply. Thus an ac voltage vg
of 120(NV,/N,) V (rms) develops between the two terminals of the secondary winding. By
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Figure 4.22 Block diagram of a dc power supply.

selecting an appropriate turns ratio (N,/N,) for the transformer, the designer can step the line
voltage down to the value required to yield the particular dc voltage output of the supply. For
instance, a secondary voltage of 8-V rms may be appropriate for a dc output of 5 V. This can
be achieved with a 15:1 turns ratio.

In addition to providing the appropriate sinusoidal amplitude for the dc power supply,
the power transformer provides electrical isolation between the electronic equipment and the
power-line circuit. This isolation minimizes the risk of electric shock to the equipment user.

The diode rectifier converts the input sinusoid vy to a unipolar output, which can have the
pulsating waveform indicated in Fig. 4.22. Although this waveform has a nonzero average
or a dc component, its pulsating nature makes it unsuitable as a dc source for electronic
circuits, hence the need for a filter. The variations in the magnitude of the rectifier output are
considerably reduced by the filter block in Fig. 4.22. In this section we shall study a number
of rectifier circuits and a simple implementation of the output filter.

The output of the rectifier filter, though much more constant than without the filter, still
contains a time-dependent component, known as ripple. To reduce the ripple and to stabilize
the magnitude of the dc output voltage against variations caused by changes in load current,
a voltage regulator is employed. Such a regulator can be implemented using the zener shunt
regulator configuration studied in Section 4.4. Alternatively, and much more commonly at
present, an integrated-circuit regulator can be used.

4.5.1 The Half-Wave Rectifier

The half-wave rectifier utilizes alternate half-cycles of the input sinusoid. Figure 4.23(a) shows
the circuit of a half-wave rectifier. This circuit was analyzed in Section 4.1 (see Fig. 4.3)
assuming an ideal diode. Using the more realistic constant-voltage-drop diode model, we
obtain

v, =0, vy < V)

(4.21a)
(4.21b)

Vo =5 — V), vs=Vp
The transfer characteristic represented by these equations is sketched in Fig. 4.23(b), where
V,=0.7V or 0.8 V. Figure 4.23(c) shows the output voltage obtained when the input v is a
sinusoid.

In selecting diodes for rectifier design, two important parameters must be specified: the
current-handling capability required of the diode, determined by the largest current the diode

is expected to conduct, and the peak inverse voltage (PIV) that the diode must be able to
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Figure 4.23 (a) Half-wave rectifier. (b) Transfer characteristic of the rectifier circuit. (¢) Input and output
waveforms.

withstand without breakdown, determined by the largest reverse voltage that is expected to
appear across the diode. In the rectifier circuit of Fig. 4.23(a), we observe that when vy is
negative the diode will be cut off and v, will be zero. It follows that the PIV is equal to the
peak of v,

PIV=V, 4.22)

It is usually prudent, however, to select a diode that has a reverse breakdown voltage at least
50% greater than the expected PIV.

Before leaving the half-wave rectifier, the reader should note two points. First, it is possible
to use the diode exponential characteristic to determine the exact transfer characteristic of the
rectifier (see Problem 4.68). However, the amount of work involved is usually too great to
be justified in practice. Of course, such an analysis can be easily done using a computer
circuit-analysis program such as SPICE.

Second, whether we analyze the circuit accurately or not, it should be obvious that this
circuit does not function properly when the input signal is small. For instance, this circuit
cannot be used to rectify an input sinusoid of 100-mV amplitude. For such an application one

209
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resorts to a so-called precision rectifier, a circuit utilizing diodes in conjunction with op amps.
One such circuit is presented in Section 4.5.5.

4.19 For the half-wave rectifier circuit in Fig. 4.23(a), show the following: (a) For the half-cycles during
which the diode conducts, conduction begins at an angle 6 = sin ' (VD/ VS) and terminates at (77 — @), for
atotal conduction angle of (7 —260). (b) The average value (dc component) of v, is V,, >~ (1/m) V. =V, /2.
(c) The peak diode current is (‘/x - VD)/R.

Find numerical values for these quantities for the case of 12-V (rms) sinusoidal input, V, >~ 0.7V,
and R =100 Q. Also, give the value for PIV.
Ans. (a) 0 =2.4°, conduction angle = 175°; (b) 5.05V; (c) 163 mA; 17V

4.5.2 The Full-Wave Rectifier

The full-wave rectifier utilizes both halves of the input sinusoid. To provide a unipolar output,
it inverts the negative halves of the sine wave. One possible implementation is shown in
Fig. 4.24(a). Here the transformer secondary winding is center-tapped to provide two equal
voltages v, across the two halves of the secondary winding with the polarities indicated. Note
that when the input line voltage (feeding the primary) is positive, both of the signals labeled
v, Will be positive. In this case D, will conduct and D, will be reverse biased. The current
through D, will flow through R and back to the center tap of the secondary. The circuit then
behaves like a half-wave rectifier, and the output during the positive half-cycles when D,
conducts will be identical to that produced by the half-wave rectifier.

Now, during the negative half-cycle of the ac line voltage, both of the voltages labeled v,
will be negative. Thus D, will be cut off while D, will conduct. The current conducted by D,
will flow through R and back to the center tap. It follows that during the negative half-cycles
while D, conducts, the circuit behaves again as a half-wave rectifier. The important point,
however, is that the current through R always flows in the same direction, and thus v,, will be
unipolar, as indicated in Fig. 4.24(c). The output waveform shown is obtained by assuming
that a conducting diode has a constant voltage drop V,,. Thus the transfer characteristic of the
full-wave rectifier takes the shape shown in Fig. 4.24(b).

The full-wave rectifier obviously produces a more “energetic” waveform than that prov-
ided by the half-wave rectifier. In almost all rectifier applications, one opts for a full-wave
type of some kind.

To find the PIV of the diodes in the full-wave rectifier circuit, consider the situation during
the positive half-cycles. Diode D, is conducting, and D, is cut off. The voltage at the cathode
of D, is v,, and that at its anode is —vy. Thus the reverse voltage across D, will be (v, + vy),
which will reach its maximum when v,, is at its peak value of (V,—V,)), and v, is at its peak
value of V; thus,

PIV =2V, -V,

which is approximately twice that for the case of the half-wave rectifier.
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Figure 4.24 Full-wave rectifier utilizing a transformer with a center-tapped secondary winding: (a) circuit;
(b) transfer characteristic assuming a constant-voltage-drop model for the diodes; (c¢)input and output

waveforms.

4.20 For the full-wave rectifier circuit in Fig. 4.24(a), show the following: (a) The output is zero for

an angle of 2sin”' (VD/VX) centered around the zero-crossing points of the sine-wave input. (b) The
average value (dc component) of v, is V,, 2 (2/m)V, — V},. (c) The peak current through each diode is
(VS — VD)/R. Find the fraction (percentage) of each cycle during which v, > 0, the value of V,,, the peak
diode current, and the value of PIV, all for the case in which v is a 12-V (rms) sinusoid, V, ~0.7 V,
and R =100 €.

Ans. 97.4%; 10.1 V; 163 mA; 33.2V
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4.5.3 The Bridge Rectifier

An alternative implementation of the full-wave rectifier is shown in Fig. 4.25(a). This circuit,
known as the bridge rectifier because of the similarity of its configuration to that of the
Wheatstone bridge, does not require a center-tapped transformer, a distinct advantage over
the full-wave rectifier circuit of Fig. 4.24. The bridge rectifier, however, requires four diodes
as compared to two in the previous circuit. This is not much of a disadvantage, because diodes
are inexpensive and one can buy a diode bridge in one package.

The bridge-rectifier circuit operates as follows: During the positive half-cycles of the input
voltage, v, is positive, and thus current is conducted through diode D,, resistor R, and diode
D,. Meanwhile, diodes D, and D, will be reverse biased. Observe that there are two diodes in
series in the conduction path, and thus v, will be lower than vg by two diode drops (compared
to one drop in the circuit previously discussed). This is somewhat of a disadvantage of the
bridge rectifier.

Next, consider the situation during the negative half-cycles of the input voltage. The
secondary voltage v, will be negative, and thus — v, will be positive, forcing current through
D5, R, and D,. Meanwhile, diodes D, and D, will be reverse biased. The important point to
note, though, is that during both half-cycles, current flows through R in the same direction
(from right to left), and thus v, will always be positive, as indicated in Fig. 4.25(b).

To determine the peak inverse voltage (PIV) of each diode, consider the circuit during the
positive half-cycles. The reverse voltage across D, can be determined from the loop formed

o
+ +
ac
line Ug
voltage
o

(b)

Figure 4.25 The bridge rectifier: (a) circuit; (b) input and output waveforms.
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by D;, R, and D, as
vps(reverse) = v, + vy, (forward)
Thus the maximum value of v, occurs at the peak of v, and is given by
PIV=V -2V, +V,=V, -V,

Observe that here the PIV is about half the value for the full-wave rectifier with a center-tapped
transformer. This is another advantage of the bridge rectifier.

Yet one more advantage of the bridge-rectifier circuit over that utilizing a center-tapped
transformer is that only about half as many turns are required for the secondary winding
of the transformer. Another way of looking at this point can be obtained by observing that
each half of the secondary winding of the center-tapped transformer is utilized for only half
the time. These advantages have made the bridge rectifier the most popular rectifier circuit
configuration.

4.21 For the bridge-rectifier circuit of Fig. 4.25(a), use the constant-voltage-drop diode model to show that
(a) the average (or dc component) of the output voltage is V,, >~ (2/7)V, — 2V}, and (b) the peak diode
current is (V, —2V,))/R. Find numerical values for the quantities in (a) and (b) and the PIV for the case
in which vy is a 12-V (rms) sinusoid, V, >~ 0.7 V, and R = 100 2.

Ans. 9.4V; 156 mA; 16.3V

4.5.4 The Rectifier with a Filter Capacitor—The Peak Rectifier

The pulsating nature of the output voltage produced by the rectifier circuits discussed above
makes it unsuitable as a dc supply for electronic circuits. A simple way to reduce the variation
of the output voltage is to place a capacitor across the load resistor. It will be shown that this
filter capacitor serves to reduce substantially the variations in the rectifier output voltage.

To see how the rectifier circuit with a filter capacitor works, consider first the simple
circuit shown in Fig. 4.26. Let the input v, be a sinusoid with a peak value V,, and assume
the diode to be ideal. As v, goes positive, the diode conducts and the capacitor is charged so
that v, = v,. This situation continues until v, reaches its peak value V,. Beyond the peak, as
v, decreases, the diode becomes reverse biased and the output voltage remains constant at
the value V. In fact, theoretically speaking, the capacitor will retain its charge and hence its
voltage indefinitely, because there is no way for the capacitor to discharge. Thus the circuit
provides a dc voltage output equal to the peak of the input sine wave. This is a very encouraging
result in view of our desire to produce a dc output.

Next, we consider the more practical situation where a load resistance R is connected
across the capacitor C, as depicted in Fig. 4.27(a). However, we will continue to assume the
diode to be ideal. As before, for a sinusoidal input, the capacitor charges to the peak of the
input V,. Then the diode cuts off, and the capacitor discharges through the load resistance R.
The capacitor discharge will continue for almost the entire cycle, until the time at which v,
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Figure 4.26 (a) A simple circuit used to illustrate the effect of a filter capacitor. (b) Input and output
waveforms assuming an ideal diode. Note that the circuit provides a dc voltage equal to the peak of the
input sine wave. The circuit is therefore known as a peak rectifier or a peak detector.

exceeds the capacitor voltage. Then the diode turns on again and charges the capacitor up to
the peak of v,, and the process repeats itself. Observe that to keep the output voltage from
decreasing too much during capacitor discharge, one selects a value for C so that the time
constant CR is much greater than the discharge interval.

We are now ready to analyze the circuit in detail. Figure 4.27(b) shows the steady-state
input and output voltage waveforms under the assumption that CR >> T, where T is the period
of the input sinusoid. The waveforms of the load current

i, =vy/R (4.23)

and of the diode current (when it is conducting)

i =i +i, (4.24)
cd (4.25)
= —_— l .
d "

are shown in Fig. 4.27(c). The following observations are in order:

1. The diode conducts for a brief interval, At, near the peak of the input sinusoid and
supplies the capacitor with charge equal to that lost during the much longer discharge
interval. The latter is approximately equal to the period 7.
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Figure 4.27 Voltage and current waveforms in the peak-rectifier circuit with CR > T. The diode is assumed
ideal.

2. Assuming an ideal diode, the diode conduction begins at time ¢, at which the input
v, equals the exponentially decaying output v,. Conduction stops at ¢, shortly after
the peak of v,; the exact value of ¢, can be determined by setting i, = 0 in Eq. (4.25).

3. During the diode-off interval, the capacitor C discharges through R, and thus v,
decays exponentially with a time constant CR. The discharge interval begins just past
the peak of v,. At the end of the discharge interval, which lasts for almost the entire
period T, v, = V,-V,, where V, is the peak-to-peak ripple voltage. When CR> T,
the value of V, is small.

215
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4. When V, is small, v, is almost constant and equal to the peak value of v,. Thus the
dc output voltage is approximately equal to V,. Similarly, the current i; is almost
constant, and its dc component /; is given by

> ==L (4.26)

If desired, a more accurate expression for the output dc voltage can be obtained by
taking the average of the extreme values of v,,

> Vo=V,—1V, (4.27)
With these observations in hand, we now derive expressions for V, and for the average
and peak values of the diode current. During the diode-off interval, v, can be expressed as

vy = Vp e—t/CR
At the end of the discharge interval we have
1 —TICR
‘/p - ‘/r - ‘/pe

Now, since CR > T, we can use the approximation e "®~1—TICR to obtain

T
Vo~V — 4.28
2V, (4.28)

We observe that to keep V, small we must select a capacitance C so that CR > T. The ripple
voltage V, in Eq. (4.28) can be expressed in terms of the frequency f = 1/T as

V
> Vo= (4.292)
SCR
Using Eq. (4.26) we can express V, by the alternate expression
V= [y (4.29b)
r _fC .

Note that an alternative interpretation of the approximation made above is that the capacitor
discharges by means of a constant current [, = V//R. This approximation is valid as long as
V. LV,

Assuming that diode conduction ceases almost at the peak of v,, we can determine the
conduction interval Az from

V,cos(wA) =V, -V,

where w = 2xf = 2n/T is the angular frequency of v,. Since (wAf) is a small angle, we can
employ the approximation cos(wAf) >~ 1 — %(a)At)2 to obtain

> oAt~ [2VIV, (4.30)

We note that when V, <V, the conduction angle w Az will be small, as assumed.
To determine the average diode current during conduction, i,,,, we equate the charge that
the diode supplies to the capacitor,

qupplied = lCavAt
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where from Eq. (4.24),
leay = Ipay =11
to the charge that the capacitor loses during the discharge interval,
Qo =CV,
to obtain, using Eqs. (4.30) and (4.29a),

i = 1L(1 tr, /2Vp/V,.> 431)

Observe that when V, <V, the average diode current during conduction is much greater than
the dc load current. This is not surprising, since the diode conducts for a very short interval
and must replenish the charge lost by the capacitor during the much longer interval in which
it is discharged by I, .

The peak value of the diode current, iy, can be determined by evaluating the expression
in Eq. (4.25) at the onset of diode conduction—that is, at t =, = — At (where t = 0 is at the
peak). Assuming that i, is almost constant at the value given by Eq. (4.26), we obtain

i =1, (1 +27,/2V,/V,) 4.32)
2 2i,,,, which correlates with the

From Egs. (4.31) and (4.32), we see that for V, <V, i,
fact that the waveform of i, is almost a right-angle triangle (see Fig. 4.27c).

Example 4.8

Consider a peak rectifier fed by a 60-Hz sinusoid having a peak value V,=100 V. Let the load resistance
R = 10k<2. Find the value of the capacitance C that will result in a peak-to-peak ripple of 2 V. Also,
calculate the fraction of the cycle during which the diode is conducting and the average and peak values
of the diode current.

Solution

From Eq. (4.29a) we obtain the value of C as
Vv, 100
C =] =
V.fR 2x60x10x10°

The conduction angle wAt is found from Eq. (4.30) as

oAt =+/2 x2/100 = 0.2 rad

Thus the diode conducts for (0.2/27) x 100 = 3.18% of the cycle. The average diode current is obtained
from Eq. (4.31), where /, = 100/10 = 10 mA, as

i = 10(1+7v2 X 10072) =324 mA

The peak diode current is found using Eq. (4.32),

i = 10(1 £ 272 % 100/2) — 638 mA

=833 uF

217




218 Chapter4 Diodes

AN

~Y

Figure 4.28 Waveforms in the full-wave peak rectifier.

The circuit of Fig. 4.27(a) is known as a half-wave peak rectifier. The full-wave rectifier
circuits of Figs. 4.24(a) and 4.25(a) can be converted to peak rectifiers by including a capacitor
across the load resistor. As in the half-wave case, the output dc voltage will be almost equal
to the peak value of the input sine wave (Fig. 4.28). The ripple frequency, however, will
be twice that of the input. The peak-to-peak ripple voltage, for this case, can be derived
using a procedure identical to that above but with the discharge period T replaced by 772,
resulting in

Y,
> V= 3k 4.33)

While the diode conduction interval, A¢, will still be given by Eq. (4.30), the average and
peak currents in each of the diodes will be given by

> =1 (1 s /vp/zv,) (4.34)
> =1 (1 2 /v,,/zv,) (4.35)

Comparing these expressions with the corresponding ones for the half-wave case, we note
that for the same values of V,,fs R, and V, (and thus the same /,), we need a capacitor
half the size of that required in the half-wave rectifier. Also, the current in each diode in
the full-wave rectifier is approximately half that which flows in the diode of the half-wave
circuit.

The analysis above assumed ideal diodes. The accuracy of the results can be improved
by taking the diode voltage drop into account. This can be easily done by replacing the
peak voltage V, to which the capacitor charges with (V,-V},) for the half-wave circuit
and the full-wave circuit using a center-tapped transformer and with (V, — 2V})) for the
bridge-rectifier case.

We conclude this section by noting that peak-rectifier circuits find application in
signal-processing systems where it is required to detect the peak of an input signal. In such
a case, the circuit is referred to as a peak detector. A particularly popular application of the
peak detector is in the design of a demodulator for amplitude-modulated (AM) signals. We
shall not discuss this application further here.



4.22 Derive the expressions in Egs. (4.33), (4.34), and (4.35).

4.23 Consider a bridge-rectifier circuit with a filter capacitor C placed across the load resistor R for the
case in which the transformer secondary delivers a sinusoid of 12 V (rms) having a 60-Hz frequency
and assuming V, = 0.8 V and a load resistance R = 100 2. Find the value of C that results in a ripple
voltage no larger than 1 V peak-to-peak. What is the dc voltage at the output? Find the load current.
Find the diodes’ conduction angle. Provide the average and peak diode currents. What is the peak
reverse voltage across each diode? Specify the diode in terms of its peak current and its PIV.

Ans. 1281 uwF; 15.4 V or (a better estimate) 14.9 V; 0.15 A; 0.36 rad (20.7°); 1.45 A; 2.74 A; 16.2 V.
Thus select a diode with 3.5-A to 4-A peak current and a 20-V PIV rating.
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THE EARLIEST

The cat’s whisker or crystal detector was the first electronic diode to be

SEMICONDUCTOR commercialized as an envelope detector for the radio-frequency signals used in

DIODE:

radio telephony. The earliest diode, invented in Germany by Karl Ferdinand Braun,
consisted of a small slab of galena (lead sulfide) to which contact was made by
sharpened spring wire, which could be adjusted. For this and other contributions to
early radios, Braun received the Nobel Prize in Physics in 1909. The silicon-based
point-contact diode, later refined and packaged, was an important solid-state
component of radar equipment during World War II.

4.5.5 Precision Half-Wave Rectifier—The Superdiode’

The rectifier circuits studied thus far suffer from having one or two diode drops in the signal
paths. Thus these circuits work well only when the signal to be rectified is much larger than
the voltage drop of a conducting diode (0.7 V or so). In such a case, the details of the diode
forward characteristics or the exact value of the diode voltage do not play a prominent role
in determining circuit performance. This is indeed the case in the application of rectifier
circuits in power-supply design. There are other applications, however, where the signal to
be rectified is small (e.g., on the order of 100 mV or so) and thus clearly insufficient to turn
on a diode. Also, in instrumentation applications, the need arises for rectifier circuits with
very precise and predictable transfer characteristics. For these applications, a class of circuits
has been developed utilizing op amps (Chapter 2) together with diodes to provide precision
rectification. In the following discussion, we study one such circuit. A comprehensive study
of op amp—diode circuits is available on the website.

“This section requires knowledge of operational amplifiers (Chapter 2).
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Figure 4.29 (a) The “superdiode” precision half-wave rectifier and (b) its almost-ideal transfer characteristic.
Note that when v, > 0 and the diode conducts, the op amp supplies the load current, and the source is
conveniently buffered, an added advantage. Not shown are the op-amp power supplies.

Figure 4.29(a) shows a precision half-wave rectifier circuit consisting of a diode placed
in the negative-feedback path of an op amp, with R being the rectifier load resistance. The op
amp, of course, needs power supplies for its operation. For simplicity, these are not shown in
the circuit diagram. The circuit works as follows: If v, goes positive, the output voltage v, of
the op amp will go positive and the diode will conduct, thus establishing a closed feedback path
between the op amp’s output terminal and the negative input terminal. This negative-feedback
path will cause a virtual short circuit to appear between the two input terminals of the op
amp. Thus the voltage at the negative input terminal, which is also the output voltage v,,
will equal (to within a few millivolts) that at the positive input terminal, which is the input
voltage v,,

vo=v, v;>0

Note that the offset voltage (=~ 0.7 V) exhibited in the simple half-wave rectifier circuit
of Fig.4.23 is no longer present. For the op-amp circuit to start operation, v, has to
exceed only a negligibly small voltage equal to the diode drop divided by the op amp’s
open-loop gain. In other words, the straight-line transfer characteristic v,—v, almost passes
through the origin. This makes this circuit suitable for applications involving very small
signals.

Consider now the case when v, goes negative. The op amp’s output voltage v, will tend
to follow and go negative. This will reverse-bias the diode, and no current will flow through
resistance R, causing v,, to remain equal to 0 V. Thus, for v, < 0, v, = 0. Since in this case
the diode is off, the op amp will be operating in an open-loop fashion, and its output will be
at its negative saturation level.

The transfer characteristic of this circuit will be that shown in Fig. 4.29(b), which is almost
identical to the ideal characteristic of a half-wave rectifier. The nonideal diode characteristics
have been almost completely masked by placing the diode in the negative-feedback path of
an op amp. This is another dramatic application of negative feedback, a subject we will study
formally in Chapter 11. The combination of diode and op amp, shown in the dashed box in
Fig. 4.29(a), is appropriately referred to as a “superdiode.”
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EXERCISES

4.24 Consider the operational rectifier or superdiode circuit of Fig. 4.29(a), with R=1k<. For v, =
10mV, 1V, and -1 V, what are the voltages that r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>